期刊文献+

利用FY-3A近红外资料反演水汽总量 被引量:20

Retrieving Precipitable Water Vapor Based on the Near-infrared Data of FY-3A Satellite
下载PDF
导出
摘要 该文介绍了利用搭载在FY-3A卫星上的中分辨率光谱成像仪(MERSI)的近红外(NIR)通道反演大气水汽总量(PWV)的方法。根据预先建立的查找表,大气水汽总量可以通过水汽通道与窗区通道的卫星测值相比反演得到。对MERSI近红外水汽通道灵敏度进行估算,结果表明:处于吸收带两翼的905 nm和980 nm通道对不同水汽量的敏感性表现比较接近,对较大水汽含量最为敏感;当水汽较弱时,强吸收的940 nm通道非常敏感。基于这3个通道对水汽含量敏感性的不同表现,采用3个通道水汽总量的加权平均值作为PWV产品的最终反演值。文中设计了水汽总量业务算法反演流程,并基于FY-3A/MERSI最新观测资料进行晴空大气水汽总量的业务处理生成试验,顺利生成MERSI单轨道水汽总量产品及日拼图中国区域产品和全球产品,同时生成多天合成产品,产品反映出MERSI具有较好的近红外水汽探测能力。将卫星反演结果与探空数据进行初步比对检验,显示卫星反演值有20%~30%系统性偏低,需要进一步改进反演查找表。 The technique of retrieving precipitable water vapor(PWV) based on near-infrared(NIR) data of Medium Resolution Spectral Imager(MERSI) on board FY-3A satellite is introduced.Five NIR channels are designed on the MERSI instrument for PWV observation,three of which are water vapor absorption channels centered near 905 nm,940 nm and 980 nm respectively,and others are atmospheric window channels at 865 nm and 1030 nm.The method adopted here for PWV retrieval is based on the ratio of reflected solar radiance(or apparent reflectance) detected by satellite between water vapor absorption channels and atmospheric window channels.By employing channel ratios,the aerosol extinction distribution and the variation effect of surface reflectance are partially removed,and the atmospheric transmittance of water vapor channels is approximately obtained.The PWV is derived from the atmospheric transmittance based on a Look-up Table which is pre-calculated using a radiation transfer model.The sensitivities of atmospheric transmission in each NIR water vapor channels of MERSI to the total precipitable water vapor are also simulated. It is found that 905 nm channel is more sensitive under humid conditions while the strong absorption channel at 940 nm is sensitive under dry conditions.And the two weak absorption channels have similar sensitivity to total water vapor amount.In this case,under a given atmosphere condition,the derived PWV values from three water vapor channels may be a little different.The weighted average of three derived PWV values is regarded as the final PWV product and the weighing coefficients are determined by their sensitivity. The procedure of the operational PWV product generation is designed and conducted for experimental retrieval.Based on the global data of MERSI,FY-3A Products Generation System(PGS) can successfully generate the daily global and regional PWV L2 products and multiday integrated L3 products,which can clearly display the spatial distribution of water vapor amounts over global land area.The result indicates that FY-3A/MERSI has an excellent ability in detecting NIR water vapor,and can demonstrate fine characteristic of PWV spatial distributions.As 940 nm channel shows good application under dry atmosphere conditions and 905 nm or 980 nm channel work well under humid situation,acceptable retrieval accuracy can always be achieved by combining these channels.In order to assess the accuracy,the retrieved PWV from MERSI NIR are compared with the ground-based sounding data.Over cloud free area,there is a good agreement between them in variation trend and spatial distribution.The MERSI PWV results are steady but 20%—30%lower than sounding,so the retrieval algorithm and the Look-up Table need to be updated to reduce this bias in the near future.
出处 《应用气象学报》 CSCD 北大核心 2011年第1期46-56,共11页 Journal of Applied Meteorological Science
基金 国家863计划课题"面向气候应用的气象卫星长序列历史数据集统-辐射再定标技术"(2007AA12Z145)
关键词 中分辨率光谱成像仪 近红外通道 水汽总量 Medium Resolution Spectral Imager near-infrared bands precipitation water vapor
  • 相关文献

参考文献18

  • 1Frouin R,Deschamps P Y,Lecomte P.Dermination from space of atmospheric total water vapor amounts by differential absorption near 940 nm:Theory and airborne verification.J Appl Meteor,1990,29(6):448-459.
  • 2Gao B C,Goetz A F H.Column atmospheric water vapor and vegetation liquid water retrievals from airborne imaging spectrometer data.J Geophys Res,1990,95(D4):3549-3564.
  • 3Gao B C,Heidebrecht K B,Goetz A F H.Derivation of scaled surface reflectances from AVIRIS data.Remote Sensing of Environment,1993,44(2-3):165-178.
  • 4Kleidman R,Kaufman Y J,Remer L A,et al.Remote sensing of total precipitable water vapor in the near-IR over Ocean Glint.Geophys Res Let,2000,27:2657-2660.
  • 5King M D,Kaufman Y J,Menzel W P,et al.Remote sensing of cloud,aerosol and water vapor properties from the Moderate Resolution Imaging Spectrometer (MODIS).IEEE Trans Geosci Remote Sensing,1992,30(1):2-27.
  • 6Kaufman Y J,Gao B C.Remote sensing of water vapor in the near IR from EOS/MODIS.IEEE Trans Geosci Remote Sensing,1992,30(5):871-884.
  • 7Gao B C,Yoram J K.Water vapor retrievals using Moderate Resolution Imaging Spectroradiometer (MODIS) near-infrared channels.IEEE Trans Geosci Remote Sensing,2003,41(2):ACH4-1-ACH4-10.
  • 8Albert P,Bennartz R,Preusker R,et al.Remote sensing of atmospheric water vapor using the Moderate Resolution Imaging Spectroradiometer (MODIS).J Atmos Oceanic Tech,2005,22:309-314.
  • 9Tahl S,Schoenermark M V.Determination of the column water vapor of the atmosphere using backscattered solar radiation measured by MOS.Int J Remote Sensing,1998,19(17):3223-3236.
  • 10Bennartz R,Fischer J.Retrieval of columnar water vapor over land from backscattered solar radiation using the medium resolution imaging spectrometer.Remote Sensing of Environment,2001,78:274-283.

二级参考文献28

  • 1金燕,黄意玢,王维和.静止气象卫星水汽通道位置的选择[J].应用气象学报,1992,3(S1):67-73. 被引量:3
  • 2黄意玢,董超华,范天锡.用神舟三号中分辨率成像光谱仪数据反演大气水汽[J].遥感学报,2006,10(5):742-748. 被引量:7
  • 3.许绍祖大气物理学基础[M].北京:气象出版社,1993.18.
  • 4张玉香 胡秀清 戎志国 等.FY-1C和FY-2B卫星遥感器可见光通道在轨辐射定标[A]..中国遥感卫星辐射校正场2000年敦煌青海湖场地综合试验成果文献[C].北京:国家卫星气象中心,2001.133.
  • 5Frouin R, Deschamps P Y, Lecomte P. Dermination from space of atmospheric total water vapor amounts by differential absorption near 940nm : theory and airborne verification [J].J Appl Meteor, 1990, 29(6) ;448 - 460.
  • 6Gao B C, Goetz A F H. Column atmospheric water vapor and vegetation liquid water retrievals from airborne imaging spectrometer data [J]. J Geophys Res, 1990, 95(D4): 3549 - 3564.
  • 7King M D , Kaufman Y J, Menzel W P et al. Remote sensing of cloud, aerosol and water vapor properties from the Moderate Resolution Imaging Spectrometer (MODIS) [J]. IEEE Trans Geosci Remote Sensing, 1992, 30(1): 2- 27.
  • 8Kaufman Y J, Gao B. Remote sensing of water vapor in the near IR from EOS/MODIS [J]. IEEE Trans Geosei Remote Sensing, 1992, 30(5): 871-884.
  • 9Gao B C, Kaufman Y J. Water vapor retrievals using MODIS near-infrared channels [J]. J Geophys Res, 2003,108(D13): 4389-4395.
  • 10Albert P, Bennartz R, Preusker R, et ah Remote sensing of atmospheric water vapor using the moderate resolution imaging spectroradiometer[J]. J Atmos Oceanic Technol, 2005, 22: 309 - 314.

共引文献33

同被引文献226

引证文献20

二级引证文献78

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部