期刊文献+

一种基于单处理机的并行关联规则算法及其在数字图书馆中的应用 被引量:7

One Parallel Association Rule Algorithm Based on Uniprocessor and its Application in Digital Library
原文传递
导出
摘要 针对现有并行挖掘技术需要建立在专门的并行机上而使中小图书馆难以实现的弊端,通过研究关联规则的内在并行性,提出一种基于图形处理单元技术的快速并行关联规则算法,实现在单处理器上并行数据挖掘。通过仿真实验证明,优化后的算法在不增加硬件设备的前提下实现单处理机并行,提高运行速度,解决传统并行关联规则挖掘难以应用化的问题,该算法对于数字图书馆具有重要的理论和应用价值。 In view of the existing parallel mining technology' s requirement of establishing on special parallel machine and the defect of medium and small-scale library hard to realize it, a rapid parallel association rule algorithm is proposed based on graphic processing unit technology, which realizes parallel mining on uniprocessor. Through the proof of simulation experiment, on the premise of not increasing hardware equipment, the optimized algorithm realizes uniprocessor parallel and raises the speed, solving the problem of traditional parallel association rule hard to engineering. This algorithm has important theoretical significance and application value for digital library.
出处 《图书情报工作》 CSSCI 北大核心 2011年第7期114-117,共4页 Library and Information Service
基金 2010年度河北省高等教育教学改革重点项目"河北高校图书馆资源共建共享的研究与实践"(项目编号:102007)研究成果之一
关键词 图形处理单元 并行关联规则 数据挖掘 数字图书馆 graphic processing uinit paiallel association rules data mining digital library
  • 相关文献

参考文献9

二级参考文献68

共引文献46

同被引文献35

  • 1于海达.高校群体性突发事件的成因与对策[J].杭州师范学院学报(自然科学版),2003,2(3):81-82. 被引量:26
  • 2韩丽娜.数据可视化技术及其应用展望[J].煤矿现代化,2005(6):39-40. 被引量:29
  • 3王艳,姜保庆,宋晶晶.一种新的加权关联规则模型[J].计算机工程与应用,2006,42(5):162-164. 被引量:14
  • 4毛国君.数据挖掘原理与算法[M].北京:清华大学出版社,2007.
  • 5R Agrawal, T Imielinski, A Swami. Mining association rules be- tween sets of items in large database [ C ]. Proceedings of ACM SIGMOD International Conference on Management of Data. Wash- ington, D.C., USA: [s.n. ], 1993.
  • 6A Hyvarinen. Fast and robust fixed point algorithm for independent component analysis [ J ]. IEEE Transaction on Neural Network, 1999,10(3) :626 -634.
  • 7J S Park. , M S Chen, P S Yu. An effective hash based algorithm for mining association rules[C]. Proceedings 1995 ACM SIGMOD International conference Management of Data ( SIGM OD'95 ). San Jose, CA, 1995:175-186.
  • 8H Toivonen. Sampling large databases for association rules[C]. In Proceeding 1996 Internati -onal conference Very Large Data Bases (VLDB'96). India: Bombay, 1996:134-145.
  • 9J W Han, J Pei, Y Yin. Mining frequent patterns without candi- date generation[C], proc of the 2000 ACM SIGMOD Int Conf on Management of Date. Dala - s, 2000 : 1 - 12.
  • 10R Agrawal, R Srikant. Fast algorithm for mining association rules [ C ]. Proceedings of the 20th International Conferenee on VLDB. Santiago: Is. n. ] , 1994.

引证文献7

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部