期刊文献+

互联电力系统可靠性的改进优先分解模拟算法 被引量:1

An Improved Preferential Decomposition-simulation Algorithm for Interconnected Power Systems Reliability Evaluation
下载PDF
导出
摘要 针对大型互联电力系统可靠性评估,提出一种改进的优先分解模拟算法,该算法由分解和模拟过程组成。针对现有文献在分解阶段的不足,该算法定义了最小不停电容量并提出了最小不停电容量的更精确的求解方法;将电力不足区域分为受援充足区域和受援不足区域2种类型,修改了受援不足区域的受援方式;提出了一个可提高区域电力不足期望值的求解速度的优化措施。应用该算法对4、6、8区域互联系统进行计算,将其计算结果与同时分解模拟法和优先分解模拟法进行比较,证明该算法可以提高计算的速度和精度。 Aimed at interconnected power systems reliability evaluation, an improved preferential decomposition -simulation algorithm which consisted of decomposition phase and simulation phase was proposed. In order to make up the disadvantage in decomposition phase depicted in the existing literatures, this paper defined the concept of minimal no loss capacity (MNLC) and proposed a new method to calculate it. In this paper, the power deficiency region was classified into adequately assisted region (AAR) and inadequately assisted region (IAR), and the manner of receiving assistance of IAR was modified. The paper also introduced an optimization measure which reduced the time of calculating area loss of load expectation (LOLE). The proposed algorithm was tested in four, six and eight areas interconnected system, the calculation results were compared with simultaneous decomposition- simulation method and preferential decomposition-simulation method. Comparison results show that the new algorithm improves the accuracy and speed.
出处 《中国电机工程学报》 EI CSCD 北大核心 2011年第10期88-94,共7页 Proceedings of the CSEE
基金 国家重点基础研究发展计划项目(973项目)(2004CB217908) 安徽省高校省级优秀青年人才基金项目(2010SQRL015)~~
关键词 互联电力系统 可靠性 最小不停电容量 电力不足区域 分解模拟法 interconnected power systems reliability minimal no loss capacity power deficiency region decomposition-simulation method
  • 相关文献

参考文献23

二级参考文献84

共引文献374

同被引文献22

  • 1李德毅,刘常昱,杜鹢,韩旭.不确定性人工智能[J].软件学报,2004,15(11):1583-1594. 被引量:405
  • 2Xie K G, Billinton R, Zhou J Q. Tracing the unreliability contributions of power system components[J]. Electric Power Components and Systems, 2008, 36(12): 1299-1309.
  • 3Wangdee W, Billinton R. Bulk electric system well-being analysis using sequential Monte Carlo simulation[J]. IEEE Transactions on Power Systems, 2006, 21(1): 188-193.
  • 4Li W Y, Zhou J Q, Lu J P, et al. Incorporating a combined fuzzy and probabilistic load model in power system reliability assessment[J].IEEE Transactions on Power Systems, 2007, 22(3): 1386-1388.
  • 5Li W Y, Zhou J Q, Xie K G, et al. Power system risk assessment using a hybrid method of fuzzy set and Monte Carlo simulation[J]. IEEE Transactions on Power Systems, 2008, 23(2): 336-343.
  • 6Haroonabadi H, Haghifam M R. Generation reliability assessment in power market using fuzzy logic and monte carlo simulation[C]// International Conference on Intelligent Systems Applications to Power Systems. TokiMesse, Niigata, 2007: 1-6.
  • 7Feng Y Q, Wu W C, Zhang B, et al. Power system operation risk assessment using credibility theory[J]. IEEE Transactions on Power Systems, 2008, 23(3): 1309-1318.
  • 8Utkin L V, Coolen F P A. Imprecise reliability: an introductory overview[M]. Computational Intelligence in Reliability Engineering, Volume2:New Metaheuristics, Neuraland Fuzzy Techniques in Reliability, Verlag Berlin Heidelberg: Springer, 2007: 261-306.
  • 9LovricM. Intemationalencyclopediaofstatisticalscience[M]. Berlin Heidelberg: Springer, 2011: 645-648.
  • 10Utkin L V, Kozine I. On new cautious structural reliability models in the framework of imprecise probabilties[J]. Structural Safety, 2010, 32(6): 411-416.

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部