期刊文献+

径向点插值法在波浪传播数值模拟中的应用 被引量:1

Application of the radial point interpolation method to numerical simulation of waves
下载PDF
导出
摘要 针对波浪数值模拟中基于矩形网格的数值方法在深水到浅水的网格间距选择与复杂边界处理上的缺陷,以及基于正交曲线网格和无结构网格的数值方法前处理工作复杂的问题,引入最近在计算力学中发展起来的无网格法——径向点插值法,对经典的双曲型缓坡方程进行空间离散,并在时间上采用四阶Adams-Bashforth-Moulton格式求解建立近岸波浪传播数学模型,通过椭圆形浅滩地形和环形河道的波浪传播计算验证,表明该无网格方法可较为有效地模拟近岸波浪的传播变形,且在处理复杂边界时具有较高的精度。 Numerical simulation of nearshore waves has become an important topic in coastal dynamics.However,there are certain drawbacks associated with the use of rectangular grids for numerical wave modeling from deep water to shallow water,such as selecting grid resolution and treating complex boundaries.Performing the pre-processing procedure can also be a difficult task to accomplish on an orthogonal curvilinear grid or an unstructured grid.As the result,a radial point interpolation method has been developed recently in computational mechanics.The hyperbolic-type mild-slope equation is used to describe wave propagation in shoaling water.The equation is spatially discretized using the meshless method,and the forth-order Adams-Bashforth-Moulton predictor-corrector scheme is employed to perform time updating.A nearshore wave model is thus obtained.The model is tested in an experimental topography consisting of an elliptic shoal and in a circular channel case.The result shows that the meshless method can effectively simulate the nearshore wave propagation with a satisfactory accuracy.The method can better treat complex boundary conditions.
出处 《水科学进展》 EI CAS CSCD 北大核心 2011年第2期258-265,共8页 Advances in Water Science
基金 国家自然科学基金资助项目(41006048) 南京水利科学研究院青年基金资助项目(Y209004)~~
关键词 无网格法 径向点插值法 波浪 双曲型缓坡方程 数学模型 meshless method radial point interpolation method waves hyperbolic mild slope equation numerical model
  • 相关文献

参考文献12

  • 1SHI F Y, DALRYMPLE R A, KIRBY J T, et al. A full nonlinear Boussinesq model in generalized curvilinear coordinates [J]. Coastal Engineering, 2001, 42: 337-358.
  • 2张洪生,尤云祥,朱良生,张军.曲线坐标系下波浪传播的数学模型及其比较与验证[J].水动力学研究与进展(A辑),2005,20(1):106-117. 被引量:2
  • 3赵明,滕斌.利用有限元方法求解双曲型缓坡方程[J].海洋工程,2002,20(3):54-60. 被引量:4
  • 4EDMOND Y M L, SHAO S D. Simulation of near-shore solitary wave mechanics by an incompressible SPH method [J]. Applied Ocean Research, 2002, 24 : 275-286.
  • 5WANG J G, LIU G R. A point interpolation meshless method based on radial basis functions[J]. International Journal for Numerical Methods in Engineering, 2002, 54: 1623-1648.
  • 6WEI G, KIRBY J T. Time-dependent numerical code for extended Boussinesq equations[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 1995, 121(5): 251-261.
  • 7COPELAND G J M. A praetieal alternative to the "mild-slope" wave equation[J]. Coastal Engineering,1985,9:125-149.
  • 8张征,李孟国.三角形网格自动生成技术的应用[J].水道港口,2001,22(3):109-112. 被引量:9
  • 9张洪生,商辉.对波浪入射边界上反射波的消波及其验证[J].上海交通大学学报,2008,42(4):674-678. 被引量:5
  • 10BERKHOFF J C W,BOOY N,RADDER A C. Verification of numerical wave propagation models for simple harmonic water waves [J]. Coastal Engineering, 1982, 6: 255-279.

二级参考文献60

共引文献17

同被引文献71

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部