期刊文献+

基于边缘统计和特征定位的人脸姿态估计方法 被引量:4

Face Pose Estimation Based on Edge Statistics and Feature Location
下载PDF
导出
摘要 提出基于整体信息和基于局部信息的人脸姿态估计方法,并对两种方法进行比较分析。基于边缘统计特征的人脸姿态估计算法先利用人脸整体信息,提取边缘统计特征,再使用线性回归算法建立特征与姿态间的对应关系。基于特征定位的人脸姿态估计是一种基于局部信息的算法,该算法先使用数理形态学运算精确定位鼻孔,再根据鼻孔与眼睛的位置关系进行人脸姿态估计。实验结果表明,本文的算法具有准确度高,计算速度快的优点。 This paper proposes an edge statistical-based face pose estimation method,which uses the overall information to extract the features firstly.And then the linear regression algorithm is applied to build the corresponding relationship between features and poses.Feature location-based face pose estimation is another method proposed in this paper.It is a local information-based method,which utilizes mathematical morphology operators to pinpoint the nostril.Then according to the location of the nose and eyes,face poses are estimated.The aforementioned methods are compared in the same dataset.Experimental results show that the method can accurately and fast estimate face pose.
出处 《计算机系统应用》 2011年第4期86-90,共5页 Computer Systems & Applications
关键词 人脸姿态估计 边缘统计特征 鼻孔定位 数理形态学 face pose estimation edge statistics feature nose location mathematical morphology
  • 相关文献

参考文献12

  • 1Li SZ, Chu R, Liao S, Zhang L. Illumination invariant face recognition using near-infrared images. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2007,29(4):627- 639.
  • 2Georghiades AS, Belhumeur PN, Kriegman DJ. From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2001,23(6):643-660.
  • 3梁国远,查红彬,刘宏.基于三维模型和仿射对应原理的人脸姿态估计方法[J].计算机学报,2005,28(5):792-800. 被引量:25
  • 4Ji Q, Hu R. 3D face pose estimation and tracking fi'om a monocular camera. Image and Vision Computing, 2002,20 (7):499-511.
  • 5Jeffrey Ng, Gong SG Composite support vector machines for detection of faces across views and pose estimation. Image and Visl.on Computing, 2002,20(5/6):359-368.
  • 6Kruger N, Pttzsch M, Malsburg CVD. Determination of face position and pose with a learned representation based on labeled graphs. Image and Vision Computing, 1997,15(8): 665-673.
  • 7Li SZ, Lu XG, Hou XW, Peng XH, Cheng QS. Learning multiview face subspaces and facial pose estimation using independent component analysis. IEEE Trans. on Image Processing, 2005,14(6):705 -712.
  • 8Raytchev B, Yoda I, Sakaue K. Head pose estimation by nonlinear manifold learning. In: Goldfarb L, ed. Proc. of the Int'l Conf. on Pattern Recognition, Washington: IEEE Computer Society, 2004,4:462-466.
  • 9刘淼,郭东伟,马捷,孙浩翔,周春光.基于椭圆模型和神经网络的人脸姿态估计方法[J].吉林大学学报(理学版),2008,46(4):687-690. 被引量:3
  • 10Lam K, Hong Y. An analytic-to-holistic approach for face recognition based on a single frontal view. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1998,20(7): 673 -686.

二级参考文献28

  • 1梁国远,查红彬,刘宏.基于三维模型和仿射对应原理的人脸姿态估计方法[J].计算机学报,2005,28(5):792-800. 被引量:25
  • 2ROWLEY H A,BALUJA S,KANADE T.Neural network-based face detection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1998,20(1):23-38.
  • 3OSUNA E,FREUND R,GIROSI F.Training support vector machines:an application to face detection[C] // IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Puerto Rico:IEEE,1997:130-136.
  • 4VIOLA P,JONES M.Robust real-time object detection[C] //IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Kauai:IEEE,2001.
  • 5LI S Z,ZHANG Z Q.Floatboost learning and statistical face detection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2004,26(9):1112-1123.
  • 6HUANG C,AI H,LI Y,et al.High-performance rotation invariant multiview face detection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,29(4):671-686.
  • 7PHAM M T,CHAM T J.Fast training and selection of Haar features using statistics in boosting-based face detection[C] //IEEE 11th International Conference on Computer Vision,[s.l.] ,IEEE,2007.
  • 8WANG P,GRENN M B,JI Q,et al.Automatic eye detection and its validation[C] // IEEE International Conference on Computer Vision and Pattern Recognition.San Diego:IEEE,2005:164-164.
  • 9GUAN Y.Robust eye detection from facial image based on multi-cue facial information[C] // IEEE International Conference on Control and Automation.GuangZhou:IEEE,2007-1775-1778.
  • 10SCHAPIRE R E,SINGER Y.Improved boosting algorithm using confidence-rated predictions[C] // Proc 11th Ann Conf Computational Learning Theory.Wisconsin:ACM,1998:80-91.

共引文献30

同被引文献61

引证文献4

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部