期刊文献+

椭圆曲线密码中一种多标量乘算法 被引量:10

A Multiple Scalar Multiplications Algorithm in the Elliptic Curve Cryptosystem
下载PDF
导出
摘要 标量乘和多标量乘是实现椭圆曲线密码体制的核心运算,其运算速度从整体上决定了椭圆曲线密码体制的实现效率.提出了一种多标量乘算法,该算法的基本思想是,将标量用带符号的整数阶乘展开式表示,并结合固定基窗口标量乘算法,使得实现多标量乘算法只需做点加运算即可.这不仅突破了传统求多标量乘算法的模式,而且提高了多标量乘的计算速度.同时,还对算法正确性和复杂度进行了分析.由实验结果可知,在m=2的情况下,该算法在计算效率上比已有的多标量乘算法提高了约47.8%~56.5%. The main operations of elliptic curve cryptosystems(ECCs) are scalar multiplications and multi-scalar multiplications,which heavily determined the overall implementation of the efficiency of ECC.This algorithm extends the fixed-base window method by using the signed integer factorial expansions of scalar.The main characteristic of this method is that only a point addition computation is required,and it greatly improves the computational performance of a multi-scalar.Furthermore,the correctness proof and complexity analysis of the new algorithm are presented.At last,experimental results show that the computational efficiency increases about 47.8% to 56.5% when compared with other existing methods in the case m=2.
出处 《软件学报》 EI CSCD 北大核心 2011年第4期782-788,共7页 Journal of Software
基金 国家自然科学基金(90704003) 国家高技术研究发展计划(863)(863-317-01-04-99 2007AA01Z431) 河南省重大科技攻关项目(092101210502)
关键词 点乘 多标量乘 阶乘展开式 T-形多标量乘 固定基窗口算法 point multiplication multi-scalar multiplication factorial expansion T-multi-scalar multiplication fixed-base window method
  • 相关文献

参考文献4

二级参考文献47

  • 1V Miller.Uses of elliptic curves in cryptography[C].In:Advances in Cryptology-CRYPTO'85,Lecture Notes in Computer Science,volume 218, Springer-Verlag, 1986 : 417-426.
  • 2N Koblitz.Elliptic curve cryptosystems[J].Math Comp, 1987; (48) : 203 -209.
  • 3J lopez ,R Dahab.An Overview of Elliptic Curve Cryptography[R]. Technical Report,Institute of Computing,State University of Campinas, Braizl, 2000-05.
  • 4Relatório T6cnico IC-00-10.An Overview of Elliptic Curve Cryptography.Institute of Computing,State University of Campinas,Braizl,2000.
  • 5M Brown,D Hankerson,J Lopez et al.Software implementation of the. NIST elliptic curves over prime fields[C].In:Topics in Cryptology- CT-RST 2001 ,LNCS vol.2020,2001:250-265.
  • 6D Hankerson ,J L6pez,A Menezes.Software Implementation of Elliptic Curve Cryptography Over Binary Fields[C].In:Cryptographic Hardware and Embedded systems-CHES 2000,LNCS 1965.2000:3-24.
  • 7F Morain,J Olivos.Speeding up the computations on an elliptic curve using addition-subtraction chains[J].Informatique théorique et applications, 1990 ,24: 531-544.
  • 8J Solinas.Efficient arithmetic on Koblitz curves[J].Designs,Codes and Cryptography,2000; 19:195-249.
  • 9Alfred J Menezes.Paul C van Oorschot,Scott A Wanstone.Handbook of Applied Cryptography[M].London : CRC Press, 1996.
  • 10E F Brickell,D M Gordon,K S McCurley et al.Fast exponentiation with precomputation[C].ln:Advances in Cryptology-Proceedings of EURO-CRYPT' 92, LNCS Springer-Verlag, Berlin, 1993 ;658 : 200-207.

共引文献33

同被引文献87

引证文献10

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部