期刊文献+

基于虚拟现实技术的多功能肌电假肢控制系统开发平台 被引量:2

Virtual Reality Technology Based on Development Platform of Multifunctional Prosthesis Control System
下载PDF
导出
摘要 利用虚拟现实技术开发的多功能假肢控制系统开发平台,可以研究肌电解码控制多功能假肢的实时操控性能,便于对影响多功能肌电假肢临床控制性能的动态因素及如何提高和改善多功能肌电假肢控制性能进行详细的研究。另外,肌电假肢的使用存在训练过程漫长、使用者精神负担大等问题,利用虚拟手代替真实肌电手进行训练,可以营造一种轻松训练环境;本系统利用SolidWorks绘制出三维手臂,再用虚拟现实三维建模方法和建模语言(VRML)节点语法编辑出完整的虚拟手臂场景,利用MATLAB中的simulink工具搭建虚拟手控制平台,实现虚拟世界和外界的交互;该系统可以通过从残疾人残余肌肉采集的肌电信号进行解码、时域特征提取、动作类型识别等操作,最终实现用肌电信号控制虚拟手臂。 Using a virtual reality (VR) technology based development platform of multifunctional prosthesis control system, we can quantify the performance of real--time control of a multifunctional myoelectric prosthesis. This development platform also can be used to investigate the effect of various dynamic factors in practical application of a prosthesis system on the prosthesis control performance of multipurpose myoelectric prosthesis, which will provide information about how to enhance and improve the control performance of a multifunctional myoelectril prosthesis. In addition, it is well known that learning to operate a myoelectric prosthesis needs a long training process and the us- ers suffer heavy mental burden from the training. The VR--based platform may provide a relaxant and enjoyable training environment. To develop this platform system, a three--dimensional upper limb was drawn by using Solidworks and then edited to an integrated scene of virtual artificial limb with virtual reality modeling and modeling language (VRML). Finally, the platform system performed through simulink of the MATLAB the interactions between virtual world and outside real world. By decoding of electromyography (EMG) signals collected from arm muscle surface, the platform system could identify the classes of different arm and hand movements and control the virtual artificial limb and/or the physical arms simutineously.
出处 《计算机测量与控制》 CSCD 北大核心 2011年第3期609-612,共4页 Computer Measurement &Control
基金 广东省机器人与智能系统重点实验室 国家自然科学基金(60971076) 深圳市政府基础研究(JC200903160393A) 中国科学院知识创新项目(KGCX2-YW-164)
关键词 肌肉电信号(EMG) 肌电解码 虚拟现实技术 多功能假肢控制 SIMULINK electromyography (EMG) EMG decoding virtual reality technology multifunctional prosthesis control simulink.
  • 相关文献

参考文献10

  • 1Sally Adee. The Revolution Will Be Prosthetized [J]. IEEE SPEC TRUM. 2009: 45-48.
  • 2\Cavazza M, Earnshaw R, Thalmann N M, et al. Motion Control of Virtual Humans [J]. IEEE Computer Graphics and Applications, 1998, 18 (5): 24-3.
  • 3贾秋林、袁冬莉,等.MATLAB7.x/simulink/stateflow系统仿真、分析与设计[M].西安:西安工业大学出版社,2006.
  • 4l.i G, Kuiken T. Modeling of Prosthetic Limb Rotation Control by Sensing Rotation of Residual Arm Bone[J]. IEEE Trans. Biomed. Eng., 2008, 55 (9): 2134-2142.
  • 5Farina D, Merletti R, Enoka R M. The extraction of neural strategies from the surface EMG [J]. Appl Physiol, 2004, 96~ 1486 - 1495.
  • 6Huang H, Zhou P, Li G, et al. An Analysis of EMG Electrode Configuration for Targeted Muscle Reinnervation Based Neural Ma chine Interface[J]. IEEE Trans. Neural Syst. Rehabil. Eng. , 2008, 16 (1): 37-45, Feb, 2008.
  • 7Hargrove L, Englehart K, Hudgins B. A Comparison of Surface and Intramuscular Myoelectric Signal Classification [J]. IEEE Trans. Biomed. Eng., 2007, 54: 847-853.
  • 8Huang Y H, Englehart K B, Hudgins B, et al. A Gaussian Mixture Model Based Classification Scheme for Myoeleetric Control of Powered Upper Limb Prostheses [J]. IEEE Transaction on Biomedical Engineering, 2005, 5:? (11): 1801-1811.
  • 9Farina D, Merletti R, Enoka R M. The extraction of neural strategies from the surface EMG[J]. Appl Physiol, vol. 96, pp. 1486-1495, 2004.
  • 10Zhou P, Lowery M M, Englehart K B. Decoding a New Neural--Machine \ Interface for Control of Artificial Limbs [J]. Neuro- physiol, 2008, 16 (1); 2974-2982, 2007.

同被引文献19

  • 1蔡铁,朱杰.自动语音识别系统中的OOV快速拒识算法[J].计算机工程,2005,31(10):22-24. 被引量:2
  • 2张友民,戴冠中,张洪才.卡尔曼滤波计算方法研究进展[J].控制理论与应用,1995,12(5):529-538. 被引量:45
  • 3张钢,朱铮涛,何淑贤.应用DTW的语音(声纹)鉴别技术研究[J].中国测试技术,2007,33(2):120-123. 被引量:3
  • 4Obando MA,Payne JH. The future application of the robotic arm ( auto- matic endoscopic system for optimal positioning or AESOP) with voice recognition in sinus endoscopic surgery. Oper Techn Otolaryngol-Head and Neck Surg,2003 ,14 :55-57.
  • 5Englehart K, Hudgins B, Parker PA, et al. Classification of the myoelec- tric signal using time-frequency based representations. Med Eng Phy, 1999,21:431-438.
  • 6Chu JU,Moon I, Mun MS. A real-time EMG pattern recognition system based on linear-nonlinear feature projection for a multifunction myoelec- tric hand. IEEE Trans Biomed Eng,2006 ,53 :2232-2239.
  • 7Tatsuya H, Makoto O, Shota S, et al. Silent-speech enhancement using body-conducted vocal-tract resonance signals. Speech Commun,2010, 52:310-313.
  • 8宁志杰;孙磊.现代矫形器与假肢的应用[M]{H}北京:军事医学科学出版社,2004.
  • 9Pinzur M S,Angelats J,Light T R. Functional outcome following traumatic upper limb amputation and prosthetic limb fitting[J].Journal of Hand Surgery-American Volume,1994.836-839.
  • 10Hargrove L,Englehart K,Hudgins B. A comparison of surface and intramuscular myoelectric signal classification[J].{H}IEEE Transactions on Biomedical Engineering,2007.847-853.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部