期刊文献+

基于蚁群粒子群混合的无线传感器网络定位算法 被引量:25

Localization Algorithm for Wireless Sensor Network Bosed on ACOPSO
下载PDF
导出
摘要 在无线传感器网络免于测距的定位算法中,DV-Hop算法是典型算法之一;蚁群粒子群算法(ACOPSO)通常被用来作全局优化;为了降低定位误差,提高定位精度,新算法先用DV-Hop算法估量未知节点与锚节点的测量距离,蚁群粒子群算法(ACOPSO)作后期优化,最小化DV-Hop的适应度函数,从而实现基于不同的距离或路径测量方法的优化;经过Matlab仿真分析表明,在相同的仿真环境中,新算法产生的平均定位误差比DV-Hop算法和基于粒子群的定位算法产生的平均定位误差更低,有效地提高了定位精度。 DV--Hop is one of the typical localization algorithms in Wireless Sensor Network, and the hybrid of the Ant Colony Optimization and Particle Swarm Optimization (ACOPSO) is used as a global optimisation functions generally. In order to reduce the positioning error and improve the location accuracy, the new algorithm combined ACOPSO with DV--Hop, DV--Hop is used to estimate the measuring distance between unknown nodes and anchor nodes, ACOPSO is used to minimise the fitness function that related to DV--Hop, Accordingly optimize the algorithm based on different distance or path. Simulation by the MATLAB environment indicated that the new algorithm have smaller average positioning error than DV HOP algorithm and based on Particle Swarm Optimization (PSO), it improved the location accu racy effectively.
作者 叶蓉 赵灵锴
出处 《计算机测量与控制》 CSCD 北大核心 2011年第3期732-735,共4页 Computer Measurement &Control
基金 国家"863"计划基金资助项目(2008AA01Z208)
关键词 无线传感器网络 定位算法 蚁群粒子群 DV—Hop 粒子群算法 wireless sensor network localization algorithm Ant Colony Optimization--Particle Swarm Optimization (ACOPSO) DV Hop Particle Swarm Optimization (PSO)
  • 相关文献

参考文献13

  • 1Nieuleseu D, Nath B. Ad-hoe positioning system [A] //In Pro eeeding of IEEE Global Communications Conference (GLOBECOM) [C], 2001, 2926-2931.
  • 2Nieuleseu D, Nath B. DV based positioning in ad-hoc networks [J]. Telecommunication Systems, Kluwer Academic Publishers, 2003, 267-280.
  • 3白凤娥,姜晓荣,牟汇慧.无线传感器网络DV-Hop定位算法的研究[J].计算机与数字工程,2010,38(3):34-36. 被引量:7
  • 4张佳,吴延海,石峰,耿方.基于DV-HOP的无线传感器网络定位算法[J].计算机应用,2010,30(2):323-326. 被引量:51
  • 5Xiao G, Li S Z, Wang X H, et al. A solution to unit commitment problem by ACO and PSO hybrid algorithm [A]. Procedings of the 6-th World Congress on Intelligent Control and Automation [C], 2006, 223 - 224.
  • 6Simon S P, Padhy N P, Anand R S. An ant colony system approach for unit commitment problem [J]. Electrical Power and EnergySystems, 2006, (28): 315-323.
  • 7Kumar V, Kumar R V R. Performance Analysis of a Finite Word Length Imp lamented CCK Modem with Rake Receiver for WLAN System [J]. IEEE, 2005, 62-67.
  • 8Kannan A, Mao G Q, Vucetic B. Simulated annealing based locali- zation in wireless sensor network [A] //Proceedings of the 30th IEEE Conference on Local Computer Networks [C], 2005, 154 - 157.
  • 9陈烨,赵国波,刘俊勇,刘天琪,李华强.用于机组组合优化的蚁群粒子群混合算法[J].电网技术,2008,32(6):52-56. 被引量:31
  • 10Nicholas Holden, Alex A. Frietas. A Hybrid PSO/ACO Algo-rithm for classification [A]. Genetic And Evolutionary Computation Conference Proceedings of the 2007 GECCO conference companion on Genetic and evolutionary computation [C]. 2007, 2745 - 2750.

二级参考文献58

共引文献137

同被引文献159

引证文献25

二级引证文献102

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部