期刊文献+

基于反馈线性化的永磁同步电机模型预测控制 被引量:17

Model Predictive Control of PMSM Based on Feedback Linearization
下载PDF
导出
摘要 提出一种基于反馈线性化和模型预测控制(MPC)策略的永磁同步电机(PMSM)控制方案。运用微分几何理论讨论了非线性PMSM模型可进行反馈线性化的充分必要条件,并将其转换为新坐标空间中的线性模型;分析了MPC原理和对系统约束条件的处理方法。针对获得的PMSM线性模型,分别采用MPC和状态反馈极点配置方法设计了控制器。在有约束条件和无约束条件的情况下,对上述两种控制方法进行了控制效果比较。仿真实验结果表明,基于反馈线性化和MPC的控制方法可以简化系统的控制器设计,减小因模型失配而产生的误差;可以解决约束条件对系统性能的影响,保证系统具有理想的稳态和动态性能。 A control scheme with feedback linearization and model predictive control(MPC) for permanent magnet synchronous motor(PMSM) is presented.The necessary and sufficient conditions of feedback linearization of the non-linear PMSM model are discussed with differential geometry method and it is transformed into linear one.The principle of MPC and the treatment of system constraints are analyzed.The controllers are respectively designed for linear PMSM model with MPC and the method of state feedback pole assignment.In the case of constraint and unconstraint condition,the control effect of above-mentioned both schemes are compared.The simulation results show that the control method based on feedback linearization and MPC can simplify the design of the controller and reduce the error generated as the model mismatch;it can overcome the effect of constraints condition and ensure the ideal steady state and dynamic performance.
出处 《测控技术》 CSCD 北大核心 2011年第3期53-57,共5页 Measurement & Control Technology
基金 航空科学基金资助项目(2007ZC53036)
关键词 永磁同步电机 模型预测控制 反馈线性化 滚动时域 极点配置 非线性 PMSM MPC feedback linearization receding horizon pole assignment nonlinear
  • 相关文献

参考文献14

  • 1刘贤兴,胡育文,卜言柱.基于滑模变结构的永磁同步电机精确线性化控制[J].航空学报,2008,29(5):1269-1273. 被引量:17
  • 2Astrom K J, Rundqwist L. Integrator windup and how to avoid It [ A ]. American Control Conference [ C ]. Pittsburgh, PA, 1989 : 1693 - 1698.
  • 3Di Cairano S, Bemporad A. Model predictive control tuning by controller matching[ J]. IEEE Transactions on Automatic Control,2010,55 ( 1 ) : 185 - 190.
  • 4Cychowski M, Szabat K, Orlowska-Kowalska T. Constrained model predictive control of the drive system with mechanical elasticity[J]. IEEE Transactions on Industrial Electronics, 2009,56(6) :1963 - 1973.
  • 5Zhao Y B, Liu G P, Rees D. Improved predictive control ap- proach to networked control systems [ J ]. IET Control Theory & Applications ,2008,2( 8 ) :675 - 681.
  • 6Osunleke A, Deng M, Inoue A, et al. Adaptive robust anti- windup generalized predictive control (RAGPC) of non-min- imum phase systems with input constraints and disturbance [ A ]. AFRICON' 09 [ C ]. 2009 : 1 - 6.
  • 7Pin G, Raimondo D M, Magni L, et al. Robust model predic- tive control of nonlinear systems with bounded and state-dependent uncertainties [ J ]. IEEE Transactions on Automatic Control, 2009,54 (7) : 1681 - 1687.
  • 8Wagh S R, Kamath A K, Singh N M. Non-linear model predictive control for improving transient stability of power sys- tem using TCSC controller[ A]. 2009 7th Asian Control Conference[ C ]. 2009:1627 - 1632.
  • 9Franco A L D, Bourles H, De Pieri E R, et al. Robust nonlinear control associating robust feedback linearization and H∞ control[ J]. IEEE Transactions on Automatic Control,2006, 51(7) :1200 - 1207.
  • 10Chiasson J. Dynamic feedback linearization of the induction motor[ J]. IEEE Transactions on Automatic Control, 1993,38(10) :1588 - 1594.

二级参考文献15

共引文献16

同被引文献128

引证文献17

二级引证文献91

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部