摘要
讨论了地月转移轨道设计中所涉及的若干关键问题。首先建立了改进的双圆模型,提高了建模精度,给出了会合坐标系之间的状态向量变换方法;然后针对Koon的文章中地月L2点流形选取存在的问题,给出了正确的流形选择方法,并基于算例给予了证明,分析了坐标变换导致的Jacobi能量不守恒问题,针对该问题提出了一种新的Poincare截面法并得到了优化Delta V能量消耗的转移轨道;最后,采用参数化方法求解Poincare截面上的拼接初始状态向量,给出了算例,证明了所提出方法的有效性。
Some problems in using libration point manifolds to design earth-moon transfer trajectory are discussed.First,the improved high precision bi-circular model is introduced,the transformation of state vector in different coordinates is presented,then according to the manifold selection problem in Koon's article,the correct manifold is selected,calculation is performed to assert this method.Because the transformation introduced here dose not conserve Jacobi energy,a new kind of Poincare section method is introduced to get optimized Delta V transfer trajectory.Finally,a parameterization method is used to solve the initial state vector on Poincare section,and an example is given to verify the efficiency of the method introduced here.
出处
《测控技术》
CSCD
北大核心
2011年第3期94-97,102,共5页
Measurement & Control Technology
基金
国家自然科学基金资助项目(60575013)
航天支撑基金资助项目(N7CH0009)
高等学校博士学科点专项科研基金资助项目(20060699024)
关键词
圆形限制性三体问题
平动点
地月转移轨道
不变流形
circular restricted three-body problem
libration point
earth-moon transfer trajectory
invariant manifolds