期刊文献+

基于串行BP网络的农业机器人视觉导航控制(英文) 被引量:18

Visual navigation control for agricultural robot using serial BP neural network
下载PDF
导出
摘要 农业机器人视觉导航系统可引导其自身在田间自主行走,为此,必须充分有效地利用导航参数。将反馈和预视参数应用于农业机器人视觉导航系统实现导航。将当前ROI窗口划分为上下区域以获取预视导航信息和当前导航信息。根据预视导航参数、当前导航参数和反馈导航参数,利用串行BP神经网络训练并调整分配神经元间的权值和阈值,确保得到正确的输出。依据串行BP网络对系统控制算法进行测试,取得了满意的结果。农业机器人实际行走路线与理想路线横坐标的最大反馈位置偏差为-0.069 m,最大预视位置偏差为-0.043 m,最大反馈角度偏差为-3.5度,最大预视角度偏差-2度。试验结果表明,该方法能获取较高精度的导航参数。 A visual navigation system for agricultural robot was developed to navigate the robot moving autonomously through field visions.To do this,it was necessary to use those sufficient and effective navigation parameters.Previews and feedback parameters were used in a visual control system to navigate by agricultural robot.The current ROI window was divided into an upper and lower path region to obtain the previewing and current navigation information.Based on the previewing,current and previous cycle navigation parameters,a serial BP neural network was trained to adjust the link weight coefficients and the threshold of each neuron,to ensure a perfect output of navigation parameters.The visual control system was validated using a serial BP neural network and satisfactory steering control results were obtained.Maximum feedback deviation of abscissa position between the actual and ideal target path was –0.069 m and the maximum previewing deviation of abscissa position was –0.043 m.Maximum angular feedback deviation was –3.5°,and maximum angular previewing deviation was –2°.Experimental results showed that the proposed method could obtain high accuracy navigation parameters.
出处 《农业工程学报》 EI CAS CSCD 北大核心 2011年第2期194-198,共5页 Transactions of the Chinese Society of Agricultural Engineering
基金 Funded by National Nature Science Foundation of China(No60975007)
关键词 机器视觉 视觉导航 兴趣窗口 路径跟踪 神经网络 machine vision visual navigation region of interest road tracking neural network
  • 相关文献

参考文献15

  • 1Wilson J N. Guidance of agricultural vehicles: a historical perspective[J]. Computers and electronics in agriculture, 2000, 25(1/2): 3-9.
  • 2Kise M, Zhang Q, Noguchi N. Obstacle detection using laser range finder for autonomous agricultural machinery[J]. Transactions of the ASAE, 2005, 48(3): 1269-1278.
  • 3Kawamura K, Namikawa T. Study on agricultural robot[J]. J of the Japanese Society of Agric, Machinery, 1998, 46(3): 353-358.
  • 4Burks T F, Shearer S A, Gates R S. Back propagation neural network design and evaluation for classifying weed species using color image texture[J]. Transactions of the ASAE, 2000, 43(4): 1029-1037.
  • 5Ashokaraj I, Tsourdos A, Silson Petal. Feature based robot navigation: using fuzzy logic and interval analysis. In: Proceedings of IEEE International Conference on Fuzzy Systems, 2004, 4(3): 1461 - 1466.
  • 6Idzikowski M, Podsedkowski L. Simulation and experimental results of a new method of mobile robot localization[C]//Proceedings of 5th International Workshop on Robot Motion and Control, 2005: 175-179.
  • 7Zhang L, Ghosh B K. Line segment based map building and localization using 2D laser rangefinder[C]//Proceedings of IEEE International Conference on Robotics and Automation, 2000, 3: 2538-2543.
  • 8Laumond J P, Jacobs L E A motion planner for non-holomic mobile robots[C]//IEEE Trans. Robotics Automat, 1994, 10: 577-593.
  • 9Reid J F, Seamy S W. Detecting crop rows using the Houghtransform[C]//Paper No. 3042 ASAE summer meeting, 1986, College Station Texas.
  • 10Schoenfisch M, Billingsley J. A comparison of automated guidance systems for a variety of operations in the growing of cotton. Proc[C]//Intemational Advanced Robotics Program 3rd Workshop on Robotics in Agriculture and the Food Industry, Brisbane, 1993: 8-16.

同被引文献205

引证文献18

二级引证文献205

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部