期刊文献+

基于SSVM的递归统计不相关特征抽取算法 被引量:3

A SSVM-Based Recursive Uncorrelated Feature Extraction Algorithm
下载PDF
导出
摘要 文章旨在研究数据分布未知的高维、小样本问题的特征抽取算法.基于支持向量机原理和特征统计不相关思想,提出基于散度支持向量机(SSVM)的递归统计不相关特征抽取算法,解决现有算法抽取特征之间存在相关性、算法受到样本分布影响等问题.针对高维小样本问题,使用PCA把SSVM优化问题变换到同构低维空间;给出边界鉴别向量集的递归求取方法,把模式高维特征投影到边界鉴别向量集,实现了统计不相关特征的抽取;分析了算法的收敛性和终止条件.文中使用核方法把线性SSVM推广到非线性SSVM,通过KPCA方法把非线性SSVM优化问题转换到低维空间中的等价优化问题,在低维空间抽取不相关非线性特征.仿真结果证明了文中算法的有效性. A feature extraction algorithm for high dimensional data with unknown distribution and small sample size problem is discussed in this paper. Based on support vector machines and the idea of uncorrelated features, a scatter support vector machine (SSVM)-based recursive uncorrelated feature extraction algorithm is presented to deal with drawbacks of existing algorithms, such as correlations among extracted features, performance decrease from distribution of samples etc. To cope with small sample size problem, the optimization problem of SSVM is transformed into that in isomorphic lower dimension space through PCA. Then the method of recursively extracting margin discriminant vectors is proposed, and the uncorrelated features can be yielded by projecting the data in margin discriminant vectors; Finally, the convergence and termination condition of the proposed algorithm are analyzed. The algorithm can be generalized into nonlinear cases through kernel methods, the optimization problem of nonlinear SSVM can be transformed into equivlent optimization problem in lower dimension through KPCA, and then uncorrelated nonlinear features can be extracted. The simulation results demonstrate the efficiencies of the proposed algorithm.
出处 《计算机学报》 EI CSCD 北大核心 2011年第3期443-451,共9页 Chinese Journal of Computers
基金 徐州师范大学培育项目(08XLY10) 中国博士后科学基金(20060390277) 江苏省“六大人才高峰”计划(06-E-05)资助~~
关键词 散度支持向量机(SSVM) 分类 特征抽取 统计不相关边界鉴别向量 主元分析(PCA) scatter support vector machine (SSVM) classification feature extraction uncorrelated margin discriminant vectors principal component analysis (PCA)
  • 相关文献

参考文献20

  • 1Li Junhong,Cui Peiling.Improved kernel fisher discriminant analysis for fault diagnosis.Expert Systems with Applica tions,2009,36:1423-1432.
  • 2Yang J,Frangi A F,Zhang D,Jin Z.KPCA plus LDA,A complete kernel Fisher discriminant framework for feature extraetion and recognition.IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(2):230-244.
  • 3Sergios Theodorridis,Konstantinos Koutroumbas.Pattern Recognition.3rd Edition.Beijing:Publishing House of Electronic Industry,2006.
  • 4应自炉,唐京海,李景文,张有为.支持向量鉴别分析及在人脸表情识别中的应用[J].电子学报,2008,36(4):725-730. 被引量:21
  • 5Qing Tao,Chu Dejun,Wang Jue.Recursive support vector machines for dimensionality reduction.IEEE Transactions on Neural Networks,2008,19(1):189-193.
  • 6杨静宇,金忠,胡钟山.具有统计不相关性的最佳鉴别特征空间的维数定理[J].计算机学报,2003,26(1):110-115. 被引量:9
  • 7Ye Jieping,Janardan Ravi,Qi Li,et al.Feature reduction via generalized uncorrelated linear discriminant analysis.IEEE Transactions on Knowledge and Data Engineering,2006,18 (10):1312-1322.
  • 8Xiong J,Ye T.Computational and theoretical analysis of null space and orthogonal linear discriminant analysis.Journal of Machine Learning Research,2006,7:1183-1204.
  • 9Howland P.Park H.Generalizing discriminant analysis using the generalized singular value decomposition.IEEE Transactions on Pattern Analysis and Machine Intelligence,2004,26(8):995-1006.
  • 10Ye Jieping.Least squares linear discriminant analysis//Proceedings of the 24th International Conference on Machine Learning,2007:1087-1093.

二级参考文献23

  • 1杨国亮,王志良,王国江.面部表情识别研究进展[J].自动化技术与应用,2006,25(4):1-6. 被引量:10
  • 2[4]Cheng Yong-Qing, Zhuang Yong-Ming, Yang Jing-Yu. Optimal Fisher discriminant analysis using the rank decomposition.Pattern Recognition, 1992, 25(1) :101~111
  • 3[5]Liu Kc, Cheng Yong-Qing, Yang Jing-Yu. A generalized optimal set of discriminant vectors. Pattern Recognition, 1992, 25(7):731~739
  • 4[10]Wilks S S. Mathematical Statistics. New York: Wiley, 1962
  • 5[11]Duda R O, Hart P E. Pattern Classification and Scene Analysis. New York: John Wiley & Sons, 1973
  • 6[12]Fukunaga K. Introduction to Statistical Pattern Recognition.New York: Academic Press, 1990
  • 7[1]Foley D H, Sammon J W Jr. An optimal set of discriminant vectors. IEEE Transactions on Computers, 1975, 24(3): 281~289
  • 8[2]DucheneJ, Leclercq S. An optimal transformation for discriminant and principal component analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1988, 10(6): 978~983
  • 9[3]Hong Zi Quan, Yang Jing-Yu. Optimal discriminant plane for a small number of samples and design method of classifier on the plane. Pattern Recognition, 1991, 24(4):317~324
  • 10R O Duda,P E Hart,D G Stork.Pattern Classification[M].John Wiley& Sons.2nd Edition.2001.

共引文献28

同被引文献24

  • 1刘毅,张彩明,赵玉华,董亮.基于多尺度小波包分析的肺音特征提取与分类[J].计算机学报,2006,29(5):769-777. 被引量:32
  • 2陶宇权,程德福,李成荣,徐喆.机器人系统中人脸特征提取技术的研究与实现[J].计算机仿真,2006,23(6):176-179. 被引量:2
  • 3Bach F R. Consistency of the Group Lasso and Multiple Kernels Learning[J]. Journal of Machine Learning Research, 2008, 9(1): 1179-1225.
  • 4G?nen M, Alpaydin E. Localized Multiple Kernel Learning[C]// Proc. of International Conference Machine Learning. Helsinki, Finland: [s. n.], 2008: 263-271.
  • 5Rakotomamonjy A, Bach F R, Canu S, et al. SimpleMKL[J]. Journal of Machine Learning Research, 2008, 9(1): 2491- 2521.
  • 6Hu Mingqing, Chen Yidiang, Tin-Yau K J. Building Sparse Multiple-kernel SVM Classifiers[J]. IEEE Transactions on Neural Network, 2009, 20(5): 827-839.
  • 7Kloft M, Brefeld U, Laskov P, et al. Non-sparse Multiple Kernel Learning[C]//Proc. of NIPS Workshop on Kernel Learning Automate Optimal Kernels. Whistler, Canada: [s. n.], 2008: 421-429.
  • 8Cortes C, Mohri M, Rostamizadeh A. L2 Regularization for Learning Kernels[C]//Proc. of ICML’09. [S. l.]: IEEE Press, 2009: 214-223.
  • 9Kloft M, Brefeld U, Sonnenburg S, et al. Efficient and Accurate Lp-norm Multiple Kernel Learning[C]//Proc. of Advance Neural Information Process System. Vancouver, Canada: [s. n.], 2010: 356-365.
  • 10Xu Zenglin, Jin Rong, King I, et al. An Extended Level Method for Efficient Multiple Kernel Learning[C]//Proc. of Advances in Neural Information Processing Systems. [S. l.]: IEEE Press, 2009: 547-556.

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部