期刊文献+

基于自适应球覆盖的散乱点采样与定向 被引量:3

Sampling and Orienting of Scattered Points Based on Adaptive Spherical Covering
下载PDF
导出
摘要 对散乱点的正确曲面重构至今依然是一个难题,特别是对于一个带有噪声、孤立点、薄壳结构及分布不均匀数据点集.而正确的法向信息在曲面重构中起着至关重要的作用.在文中,作者提出了一个法向量方向一致化的方法,能处理上述特性的数据,实现对曲面重构的数据进行预处理.首先,使用基于自适应球覆盖技术生成原始数据的一个根据曲面几何特征进行分布的采样点集,以保证在重构曲面上保留重要几何特征.然后,借助于球体的相交关系构造出采样点的邻域,实现在非均匀分布的数据上进行法向量方向传播,获得具有正确法向信息的采样点集.文中例子能充分说明文中方法的稳定性和有效性. The surface reconstruction from scattered points is still a difficult process, especially for the points with noise, outliers, non-uniformities, and thin-sharp features. Oriented normals at the points play a critical role in surface reconstruction. This paper presents a method to provide orientation consistent normals on points with the above defects as a preprocessing for surface reconstruction. Firstly, this method generates a particle set by an adaptive spherical cover. The particles are distributed on the reconstructed surface according to the surface shape for preserving important geometric features. Secondly, a priority-driven normal propagation procedure is performed on an uneven distributed data to assign consistent oriented normal vectors to the particles. During this procedure, the neighborhoods of the particles are constructed depending on the intersection relationships between spheres. The results in this paper demonstrate that the method is robust and efficient.
出处 《计算机学报》 EI CSCD 北大核心 2011年第3期489-498,共10页 Chinese Journal of Computers
基金 国家自然科学基金(61003125 60970097 10871208) 浙江大学CAD&CG国家重点实验室开放课题基金(A0805)资助
关键词 法向量定向 自适应球覆盖 一致性 散乱点 曲面重构 normal orientation adaptive spherical covering consistency scattered points surface reconstruction
  • 相关文献

参考文献14

  • 1Sun J,Smith M,Smith L,Farooq A.Examining the uncertainty of the recovered surface normal in three light photometric stereo.Image and Vision Computing,2007,25(7):1073-1079.
  • 2Hoppe H,DeRose T,Duchamp T,McDonald J,Stuetzle W.Surface reconstruction from unorganized points.Computer Graphics,1992,26(2):71-78.
  • 3Huang H,Li D,Zhang H,Ascher U,Cohen-Or D.Consolidation of unorganized point clouds for surface reconstruction.ACM Transactions on Graphics.2009,28(5):176.
  • 4Lipman Y,Cohen-Or D,Levin D,Tal-Ezer H.Parameterization-free projection for geometry reconstruction.ACM Transactions on Graphics,2007,26(3):22.
  • 5Liu S J,Wang C C L.Orienting unorganized points for surface reconstruction.Computer&Graphics,2010,34(3):209-218.
  • 6Ohtake Y,Belyaev A,Seidel H-P.An integrating approach to meshing scattered point data//Proceedings of the 9th ACM Symposium on Solid and Physical Modeling.Cambridge,MA,USA.New York:ACM Press,2006:61-69.
  • 7Ohtake Y,Belyaev A,Seidel H-P.3D scattered data interpolation and approximation with multilevel compactly supported RBFs.Graphical Models,2005,67(3):150-165.
  • 8Can J C,Beatson R K,Cherrie J B,Mitchell T J,Fright W R,McCallum B C,Evans T R.Reconstruction and represenration of 3D objects with radial basis functions//Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques.Los Angeles.CA,USA,2001:67-76.
  • 9Floater M S,Iske A.Multistep scattered data interpolation using compactly supported radial basis functions.Journal of Computing Applied Mathematics,1996,73(1-2):65-78.
  • 10Amenta N,Bern M,Kamvysselis M.A new voronoi-based surface reconstruction algorithm//Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques.Orlando,FL,USA,1998:415-421.

同被引文献8

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部