期刊文献+

基于机器视觉的罐盖质量检测系统设计 被引量:13

Design of Cover Quality Visual Inspection System Based on Machine Vision
下载PDF
导出
摘要 文中根据饮料易拉罐罐盖制造生产线的工作环境和检测要求,研制了基于机器视觉的罐盖质量检测系统,实现了铝制罐盖瑕疵的自动检测和快速剔除。该检测系统由下盖装置、盖传送装置、光源与图像采集系统、视觉处理及控制系统、次品剔除装置等组成,铝制罐盖经下盖装置连续不断的进入盖传输区域,盖传输装置通过真空将罐盖吸附在传送带上,当罐盖通过成像系统时,光纤传感器触发工业相机和光源,获得高速罐盖图像,图像检测系统分析罐盖多个检测区域,电气控制系统根据图像检测结果分拣罐盖。通过实验测试证明:该视觉系统实时性好,可靠性高,有效地提高了罐盖检测生产线的工作效率。 According to cover packaging line working environment and working condition,an aluminum lid surface inspection system based on machine vision was studied,it achieved automatically detect and remove quickly.This automatic inspection system composed of lower cover device,cover transmitting device,the light source and image acquisition system,visual processing and electrical control systems,and inferior sorting devices,etc.The aluminum cans cover passes the lower cover device into cover transmission area continuously,the transmitting device will be covered by the covers adhering to conveyor belt through vacuum.When the cover comes across the image acquisition system,fibre-optic sensor triggers the LED light source and the industry camera,then the IPC computer gets a frame of image.The imaging processing system analyzed the cover image.Finally,electrical control system sorts the inferior covers based on the visual inspection results.Experiment result demonstrates this system has superiority such as real-time and reliability,improves the efficiency of traditional cover packing system effectively.
作者 贺超英 张辉
出处 《仪表技术与传感器》 CSCD 北大核心 2011年第2期85-87,90,共4页 Instrument Technique and Sensor
基金 国家自然科学基金资助项目(61072121) 湖南省研究生科研创新项目(CX2009B0703)
关键词 机器视觉 罐盖质量检测 视觉检测 剔除机构 machine vision cover quality visual inspection visual inspection sorting institutions
  • 相关文献

参考文献4

二级参考文献23

  • 1陈俊杰,谢春萍.自动验布系统[J].纺织科技进展,2004(5):56-57. 被引量:10
  • 2赵海涛,董介春,张屹.基于灰度共生矩阵的自适应图像边缘检测[J].微计算机信息,2006(06Z):186-188. 被引量:15
  • 3Malamas E, Petrakis G M, Zervakis M, et al. A survey on industrial vision system, applications and tools[J]. Image and Vision Computing, 2003, 21(2): 171-188.
  • 4Nikhil R P, Sankar K P. A review on image segmentation techniques[J]. Pattern Recognition, 1993, 26(9): 1 277- 1 294.
  • 5Geladi P, Grahn H. Multivariate image analysis[ M]. Chichester: John Wiley & Sons, 1996.
  • 6Bharati M H, Macgregor J F. Multivariate image analysis for real-time process monitoring and control [J]. Industrial & Engineering Chemistry Research. 1998, 37(12) : 4 715-4 724.
  • 7Geladi P, Isaksson H, Lindqvist L, et al. Principal component analysis of multivariate images [J]. Chemometries and Intelligent Laboratory Systems, 1989, 5(3) : 209-220.
  • 8Nomikos P, Macgregor J F. Multivariate SPC charts for monitoring batch processes [ J ]. Technometrics, 1995, 37 ( 1 ) 41 -59.
  • 9Gonzalez R C, Woods R E. Digital image processing[M]. 2nd ed. New Jersey: Prentice Hall, 2002.
  • 10[2]Rautaruukki New Technology. Defect Classification in Surface Inspection of Strip Steel. Steel Times, 1992(5): 214~216

共引文献260

同被引文献89

引证文献13

二级引证文献66

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部