摘要
首先, 当Q是一个拟单调的q矩阵的时候, 我们找出最小的Q函数是一个Feller的转移函数的准则. 然后我们把这个结论应用于生成分支q矩阵并得到相应的生成分支过程的Feller准则. 特别地, 设θ是分支q矩阵中的非线性数, 总是存在一个分点θ0满足1 ≤θ0 ≤ 2或θ0 < +∞使得生成分支过程是否是Feller的要依据θ < θ0或者θ > θ0.
We first establish a criterion for the minimal Q-function to be a Feller transition function when Q is a quasi-monotone q-matrix.We then apply this result to generalized branching q-matrices and obtain the corresponding Feller criteria for generalized branching processes.In particular,it is shown that there always exists a separating point θ0 with 1 ≤ θ0 ≤ 2 or θ0 +∞ such that whether the generalized branching processes(with resurrection) are Feller processes or not according to θ θ0 or θ θ0,where θ is the nonlinear number given in the branching q-matrix.
出处
《应用概率统计》
CSCD
北大核心
2011年第1期48-60,共13页
Chinese Journal of Applied Probability and Statistics
基金
supported by the China Postdoctoral Science Foundation(2005038326)
关键词
连续时间马尔科夫链
生成分支过程
Feller过程
生成分支q矩阵
q函数
q豫解函数
Continuous-time Markov chains
generalized branching processes
Feller processes
generalized branching q-matrices
q-function
q-resolvent function.