期刊文献+

大功率汽轮机调节级级段气动特性研究 被引量:1

Investigation on Aerodynamic Performance of Controlling Stages for Large Power Steam Turbines
下载PDF
导出
摘要 采用CFD数值分析软件对某大功率机组调节级级段进行了气动特性分析,分析对象为包括调节阀、调节级整圈与第一压力级整圈的全真几何模型;分析结果表明在设计工况下,该调节级表现出强烈的非周期性和非轴对称流动特性,与常规周期性边界分析得出的调节级气动性能存在显著差异;该数值分析结果与电厂热力性能试验结果表现出的良好一致性表明该分析方法已具有很好的工程精度。 In this paper,aerodynamic performance and flow characteristic of the controlling stages,including controlling valve,controlling stage and first stage of high cylinder turbine,were investigated by using CFD software.The result indicates that the flow field of the controlling stages is strongly non-periodic and non-axisymmetric,and the remarkable difference is represented to compare with traditional CFD simulation.So the result of CFD simulation has better consistent with experimentation in power plant and demonstrates that the method of CFD simulation has good precision in engineering.
出处 《热力透平》 2011年第1期11-15,61,共6页 Thermal Turbine
关键词 调节级级段 CFD全周模拟 冻结转子法 非周期性 非轴对称 流动特性 气动性能 controlling stages full-passage CFD simulation frozen rotor non-periodic non-axisymmetric flow characteristic aerodynamic performance
  • 相关文献

参考文献1

二级参考文献38

  • 1[1]Harten A.High resolution scheme for hyperbolic system of conservation law[J].J Comp Phys,1983,(49): 357~393.
  • 2[2]Sweby P K.High resolution schemes using flux limiters for hyperbolic conservation laws[J].SIAM J Num Anal,1984,21: 995~1 011.
  • 3[3]Yee H C.Construction of explicit and implicit symmetric TVD scheme and their applications[J].J Comp Phys,1987,(68): 151~179.
  • 4[4]Steger J L,Warming R F.Flux vector splitting of the inviscid gasdynamic equations with application to finite difference methods[J].J Comp Phys,1981,(40): 263~293.
  • 5[5]Chakravarthy S R.The split-coefficient matrix method for hyperbolic system of gas dynamics equations[A].AIAA Paper[C],80-268,1980.
  • 6[6]Roe P L.Approximate Riemann solvers,parameter vectors and different schemes[J].J Comp Phys,1981,(43): 357~372.
  • 7[7]Van Leer B.Towards the ultimate conservative diffe-rence scheme V: A second order sequal to Godunov's method[J].J Comp Phys,1979,(32): 101~136.
  • 8[8]Jameson A,Schmidt W,Turkel E.Numerical solution of the Euler equation by finite volume methods with Runge-Kutta time stepping schemes[A].AIAA Paper [C],81-1259,1981.
  • 9[9]Ni R H.A Multiple grid scheme for solving the Euler equation[J].J AIAA,1982,20: 1 565~1 571.
  • 10[10]Van Leer B,Tai C H,Powell K G.Design of optimally smoothing multistage schemes for the Euler equations[A].AIAA Paper[C],89-1933,1989.

共引文献212

同被引文献10

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部