期刊文献+

直线电机伺服定位系统时间最优鲁棒控制 被引量:17

Robust time-optimal control of a linear motor positioning system
下载PDF
导出
摘要 无铁心永磁同步直线电机伺服定位系统点位运动控制中Bang-Bang控制满足庞特里亚金极小值原理条件。为确定Bang-Bang控制中的切换时间,提出一种基于粒子群优化算法的切换时间计算方法。为保证电机系统的稳定性和鲁棒性,提出先用Bang-Bang控制后用快速终端滑模控制的两阶段控制方案。系统起始阶段采用Bang-Bang控制保证系统变量以最快速度向平衡点收敛。当位置变量进入终端状态某邻域时,系统切换为滑模控制,使系统具有很强的鲁棒性。仿真结果表明,同传统切换时间计算方法相比该方法大大降低了陷入局部极值的可能性,具有更好的可实施性。实验结果表明,该复合控制算法能使电机伺服定位系统从起始点在最短时间内运动至目标点并保持很好的稳定性和控制精确度。 In this paper,a robust minimum-time control technique is presented for point-to-point motion of a linear positioning system with an ironless permanent magnet linear synchronous motor(ILPMLSM).For this system,a time-optimal control satisfying Pontryagin's minimum principle is in Bang-Bang fashion.A switching time computation algorithm using particle swarm optimization(PSO) is proposed to obtain bang-bang control law.Due to parameter variations and other disturbances,the obtained bang-bang control would result in undesirable chattering towards the end of the desired final state.To tackle this problem,a two-phase control scheme is developed in this work.In the first phase(gross motion control),a bang-bang control law is applied,while in the second phase(fine motion control) a fast terminal sliding mode control(FTSMC) technique is employed to guarantee the convergence of the state to the desired final state.The simulation results show that the proposed method is more applicable and the probability of tramped into local extremum is dramatically reduced.Experimental results demonstrate that the proposed control scheme is effective and robust against parameter variations and other disturbances.
出处 《电机与控制学报》 EI CSCD 北大核心 2011年第3期13-18,共6页 Electric Machines and Control
基金 国家留学基金委"建设高水平大学公派研究生项目("2007103188)
关键词 直线电机 最优控制 BANG-BANG控制 粒子群优化 快速终端滑模控制 linear motors optimal control Bang-Bang control particle swarm optimization fast terminal sliding mode control
  • 相关文献

参考文献16

  • 1MAURER H, OSMOLOVSKll N P. Second order sufficient conditions for time-optimal bang-bang control problems [ J ]. SIAM Journal on Control and Optimization, 2004, 42 (6) : 2239 -2263.
  • 2MEIER E B, BRYSON A E. Efficient algorithm for time optimal control of two-link manipulator [ J]. Journal of Guidance, Control, and Dynamics, 1990, 13:859-866.
  • 3LEE tt W J, TEO K L, REHBOCK V, ct al. Control parameterization enhancing technique for time optimal control problems [ J]. Dynamic Systems and Applications, 1997, 6 : 243 -262.
  • 4HU G S, ONG C J, TEO C L. An entranced transcribing scheme for the numerical solution of a class of optimal control problems [J]. Engineering Optimization, 2002, 34(2) : 155 -173.
  • 5WU Xingjing, MCINNES C R. Memorised quasi-time-fuel-optimal feedback control of perturbed double integrator [ J]. Automatiea, 2002, 38(8) : 1389 - 1396.
  • 6KAYA C Y, NOKAS J L. Computations and time-optimal controls [ J ]. Optimal Control Applications and methods, 1996, 17 : 171 - 185.
  • 7KAYA C Y, NOKAS J L. Computational method for time-optimal switching control [ J]. Journal of Optimization Theory and Applications, 2002, 117( 1 ) :69 -92.
  • 8KAYA C Y, LUCAS S K, SIMAKOV S T, Computations for bang- bang constrained optimal control using a mathematical programming formulation [ J ]. Optimal Control Applications and Methods, 2004, 25:1 -14.
  • 9MAURER H, BUSKENS C, KIM J H R, et al. Optimization methods for the verification of second order sufficient conditions for bang-bang controls [ J]. Optimal Control Applications and Methods, 2005, 26:129-156.
  • 10NEWMAN W S, SOUCCAR K. Robust, near time-optimal control of nonlinear second-order systems: theory and experiments [ J]. Journal of Dynamic systems, Measurement, and Control, 1991, 113(3) : 363 -370.

同被引文献168

引证文献17

二级引证文献84

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部