期刊文献+

任务驱动的发育机器人研究 被引量:1

Task-driven developmental robot
下载PDF
导出
摘要 针对现有的发育机器人算法不能有效区分任务的缺点,提出一种任务驱动的发育机器人范式。该范式以BP神经网络为载体,将不同环境下的不同任务分开存储,每个任务中存储对应网络训练的权值与阈值,在执行任务时,会调用相应的参数重构神经网络,计算实时的输出。实验结果表明该范式不仅可以体现发育机器人的基本思想,满足机器人实时性的要求,同时能够有效地解决多任务之间冲突的问题。 Aiming at the problem of ineffective differentiate tasks of existing developmental robotics algorithms,a novel task-driven diagram is proposed.In the algorithm,BP neural network is used,and different tasks in different environments are not saved together.Weights and thresholds of neural network are saved in corresponding task.The parameters will be used to reconstruct neural network for computing outputs when execution of the corresponding task.The experiments results show that the diagram not only can embody the idea of developmental robotics and meet the acquirement of real time,but also can effectively avoid conflict of different tasks.
出处 《黑龙江工程学院学报》 CAS 2011年第1期52-56,共5页 Journal of Heilongjiang Institute of Technology
基金 黑龙江省教育厅资助项目(11551403)
关键词 发育机器人 任务驱动 神经网络 发育范式 developmental robot task-driven neural network developmental diagram
  • 相关文献

参考文献9

  • 1WENG J. Learning in image analysis and beyond: Development [A]. Visual Communication and Image Process- ing[C]. New York, 1998.
  • 2WENG J, MCCLELLAND J, PENTLAND A, et al. Autonomous mental development by robots and animals [J ]. Science, 2001, 291: 599-600.
  • 3PAPAI.IA D. E,OLDS S. W, FELDMAN R. D. Human development[M]. Boston.. McGraw-Hill Education (Asia) Co. ,2005.
  • 4BLANK D, KUMAR D, MEEDEN L, et al. Bringing up robot: Fundamental mechanisms for creating a selfmotivated, self-organizing architecture[J]. Cybernetics and Systems, 2005,36(2) : 125-150.
  • 5STOJANOV G. PETITAGE. A Case Study in Developmental Robotics[A]. Proceedings of the first International Workshop on epigenetic robotics [C]. Lund, 2001.
  • 6WENG J. Developmental Robotics: Theory and Eexperiments[J]. International Journal of Humanoid Robotics. 2004, 1(2) : 199-236.
  • 7TAN K. C, CHEN Y. J, TAN K. K, et al. Task-oriented developmental learning for humanoid robots [ J]. IEEE Trans On Industry Electronics, 2005, 52(3) ; 906- 914.
  • 8曹向海 刘宏伟 吴顺君.一种有效的增量BDPCA算法.西安电子科技大学学报,2007,34(7):84-87.
  • 9CAO X. H, LIU H. W, WU S.J. A kind of efficient incremental BDPCA algorithm[J]. Journal of Xidian University(Natural Science), 2007,34:1-4.

共引文献1

同被引文献5

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部