摘要
研究一类变系数抛物型微分方程的自由边界问题,根据变系数这一特点,用积分插值法建立方程的守恒差分格式。在方程无相变的情况下,相应地用隐式差分格式逼近微分方程,得到离散点温度值随时间或空间变化的规律。
A free boundary problem of parabolic equation with variable coefficients is mainly investigated in this paper,in view of the variable coefficients,the conservation difference scheme of the equation is derived through the integral interpolation method.Under the condition of inexistence of phase-change,the implicit difference scheme to approximate the differential equation is given,the changing laws of the temperature at discrete point varying with the time and space variables are obtained.
出处
《黑龙江工程学院学报》
CAS
2011年第1期73-74,77,共3页
Journal of Heilongjiang Institute of Technology
基金
黑龙江省教育厅科学技术研究项目(11541296)
关键词
变系数
自由边界
数值分析
差分格式
variable coefficient
free boundary
numerical analysis
difference scheme