期刊文献+

叠加Runge-Kutta方法的几类稳定性分析

Some stability properties of additive Runge-Kutta methods
下载PDF
导出
摘要 数值积分处理非线性刚性初值问题时,常常要求数值方法的BN-稳定性。在许多应用中,由于定义模块的微分算子的特殊结构,使得用叠加方法数值处理很方便。给出叠加Runge-Kutta方法的BN-稳定的一个充要条件及它的代数稳定性和AN-稳定性的定义,同时给出这几类稳定性的等价条件。 An important requirement of numerical methods for the integration of nonlinear stiff initial value problems is BN-stability.In many applications it is also convenient to use additive methods to take advantage of the special structure of the differential operator that defines the model.The purpose of this paper is to provide a necessary and sufficient condition for the BN-stability of additive Runge-Kutta methods,introduce the algebraic stability and AN-stability and prove they are equivalent.
作者 袁海燕 赵爽
出处 《黑龙江工程学院学报》 CAS 2011年第1期75-77,共3页 Journal of Heilongjiang Institute of Technology
关键词 BN-稳定 AN-稳定 代数稳定 叠加Runge-Kutta方法 BN-stability AN-stability algebraic stability additive Runge-Kutta methods
  • 相关文献

参考文献10

  • 1A. L. ARAUJO. A note on B-stability of splitting methods[J]. Computing and Visualization in Science, 2004,6 (2-3) :53-57.
  • 2J. J. BIESIADECKI, R.D. SKEEL. Dangers of multiple time step methods[J]. Comput Phys, 1993,109 : 318-328.
  • 3G. J. C(X)PER, A. SAYFY. Additive methods for the numerical solution of ordinary dierential equations [J].Math. Comput, 1980,35 : 1159-1172.
  • 4K. BURRAGE, J.C. BUTCHER. Stability criteria for implicit Runge-Kutta methods [J]. SIAM, 1979, 16: 46- 57.
  • 5J. C. BUTCHER. A stability property of implicit RungeKutta methods[J]. BIT, 1975, 15 : 358-361.
  • 6A. L. ARAUJO, A. MURUA, J. M. SANZ-SERNA. Symplectic methods based on decompositions[J]. SIAM, 1997,34 (12) : 1926-1947.
  • 7E. HAIRER, G. WANNER. Solving Ordinary Differential Equations Ⅱ, Sti and Differential-Algebraic Problems[M]. Berlin:Springer-Verlag, 1996:341-434.
  • 8匡蛟旬.泛函微分方程的数值处理[M].上海:科学出版社,1999:44-51.
  • 9HONGYU LIU,JUN ZOU. Some new additive Runge- Kutta methods and their application. Comput[J]. Appl. Math, 2006,190: 74-98.
  • 10袁海燕,赵景军.延迟微分方程隐-显式线性多步法的稳定性[J].系统仿真学报,2009,21(23):7418-7420. 被引量:1

二级参考文献11

  • 1J G Verwer, J G Blom, W Hundsdorfer. An implicit-explicit approach for atmospheric transport-chemistry problems [J]. Appl. Numer. Math. (S0168-9274), 1996, 20(1-2): 191-209.
  • 2Z Zlatev. Computer treatment of large air pollution models. USA: Kluwer, 1995.
  • 3B Zabic-kowal. Stability in the numerical solution of linear parabolic equations with a delay term [J]. BIT (S 1572-9125), 2001,41(1): 191-206.
  • 4J M Varah. Stability restrictions on second order, three-level finitdifference schemes for parabolic equations [J]. SIAM J. Numer. Anal. (S0036-1429), 1980, 17(2): 300-309.
  • 5W Hundsdorfer, J G Verwer. A note on splitting errors for advectionreaction equations [J]. Appl. Numer. Math. (S0168-9274), 1995, 18(1-3): 191-199.
  • 6J D Lambert. Numerieal methods for ordinary differential systems [M]. USA: Wiley, 1991.
  • 7S Maset. Stability of Runge-Kutta methods for linear delay differential equations [J]. Numer. Math. (S0010-1007), 2000, 87(2): 353-371.
  • 8MA-K Z Brahim, A EI-Safty, S M Abo-Aasha. On the P-stbility of quadratic spline for delay differential equations [J]. Int. J. Comput. Math. (S1029-0265), 1994, 52(3): 219-223.
  • 9AIserles.微分方程数值分析基础教程[M].北京:清华大学出版社,2005.
  • 10T Koto. Stability of IMEX Runge-Kutta methods for delay differential equations [J]. J. Compt. Appl. Math. (S0377-0427), 2008, 211(2): 201-212.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部