期刊文献+

基于复杂网络社团划分的网络流量分类 被引量:5

Internet Traffic Classification Based on Detecting Community Structure in Complex Network
下载PDF
导出
摘要 随着网络的高速发展以及各种应用的不断涌现,采用端口号映射或有效负载分析的方法进行流量分类与应用识别已难以满足应用的需求。以流为网络节点、流之间统计特征的相似度为边,构建流相关网络模型,利用New-man快速社团划分算法(NFCD)对流相关网络模型进行社团划分,得到了流的聚类结果,实现了网络流量的分类,并与先前的两种无监督的流量分类算法(K-Means,DBSCAN)进行了对比。实验结果显示,利用NFCD算法具有更高的准确率,并能产生更好的聚类效果,且不受输入参数影响。 In recent years,Internet traffic classification using port-based or payload-based methods is becoming increa-singly difficult with peer-to-peer(P2P) applications using dynamic port numbers,masquerading techniques,and encryption to avoid detection.Because supervised clustering algorithm needs accuracy of training sets and it can not classify unknown application,we introduced complex network's community detecting algorithm,a new unsupervised classify algorithm,which has previously not been used for network traffic classification.We evaluated this algorithm and compared it with the previously used unsupervised K-means and DBSCAN algorithm,using empirical Internet traces.The experiment results show complex network's community detecting algorithm works very well in accuracy and produces better clusters,besides,complex network's community detecting algorithm need not know the number of the traffic application beforehand.
作者 蔡君 余顺争
出处 《计算机科学》 CSCD 北大核心 2011年第3期80-82,86,共4页 Computer Science
基金 国家高技术研究发展计划(863)(2007AA01Z449) 国家自然科学基金(60970146) 国家自然科学基金-广东联合基金重点项目(U0735002)资助
关键词 流量分类 无监督聚类 社团划分 复杂网络 Traffic classification Unsupervised clustering Community detecting algorithm Complex network
  • 相关文献

参考文献15

  • 1Sen S,Spatscheck O, Wang Dongmei. Accurate, scalable in network identification of p2p traffic using application signature[C]// Proceedings of the 13th international conference on World Wide Web. 2004,512-521.
  • 2Haffner P, Sen S, Spatscheek O, et al. ACAS: Automated Construction of Application signatures[C]//Proceedings of the 2005 ACM SIGCOMM Workshop on Mining Network Data. 2005: 197 202.
  • 3Moore A, Zuev D. Internet traffic classification using Bayesian analysis techniques [C] // ACM International Conference on Measurement and Modeling of Computer Systems (SIGMERTRICS). 2005: 50-60.
  • 4徐鹏,林森.基于C4.5决策树的流量分类方法[J].软件学报,2009,20(10):2692-2704. 被引量:171
  • 5Williams N, Zander S, Armitage G. A preliminary performance comparison of five machine learning algorithmsfor practical IP traffic flow classification[J]. Special Interest Group on Data Communication Computer Communication Review, 2006: 5-15.
  • 6Auld T,Moore A W,Gull S F. Bayesian neural networks for Internet traffic classification [J]. IEEE Transactions on Neural Networks, 2007 : 223 239.
  • 7Erman J, Alitt M, Mahanii A. Traffic classification using clustering algorithms[C]//ACM SIGCOMM MineNet. 2006:281-286.
  • 8Strehl A,Ghosh J, Mooney R. Impact of similarity measures on web-page clustering [D]. AI for Web Search,2000.
  • 9Newman M E J. Mixing patterns in networks[J]. Phys. Rev. E, 2003,67:026126.
  • 10Clauset A,Newman M E .I ,Moore C. Finding community structure in very large networks[J]. Phys. Rev. E,2004,70:066111.

二级参考文献17

  • 1Moore AW, Zuev D. Internet traffic classification using Bayesian analysis techniques. In: Proc. of the 2005 ACM SIGMETRICS Int'l Conf. on Measurement and Modeling of Computer Systems, Banff, 2005. 50-60. http://www.cl.cam.ac.uk/-awm22 /publications/moore2005internet.pdf.
  • 2Madhukar A, Williamson C. A longitudinal study of P2P traffic classification. In: Proc. of the 14th IEEE Int'l Syrup. on Modeling, Analysis, and Simulation. Monterey, 2006. http://ieeexplore.ieee.org/xpl/ffeeabs_all.jsp?arnumber=1698549.
  • 3Moore AW, Papagiannaki K. Toward the accurate identification of network applications. In: Dovrolis C, ed. Proc. of the PAM 2005. LNCS 3431, Heidelberg: Springer-Verlag, 2005.41-54.
  • 4Karagiannis T, Papagiannaki K, Faloutsos M. BLINC: Multilevel traffic classification in the dark. In: Proc. of the ACM SIGCOMM. Philadelphia, 2005. 229-240. http://conferences.sigcomm.org/sigcomm/2005/paper-KarPap.pdf.
  • 5Roughan M, Sen S, Spatscheck O, Dutfield N. Class-of-Service mapping for QoS: A statistical signature-based approach to IP traffic classification. In: Proc. of the ACM SIGCOMM Internet Measurement Conf. Taormina, 2004. 135-148. http://www.imconf.net/imc-2004/papers/p 135-roughan.pdf.
  • 6Zuev D, Moore AW. Traffic classification using a statistical approach. In: Dovrolis C, ed. Proc. of the PAM 2005. LNCS 3431, Heidelberg: Springer-Verlag, 2005. 321-324.
  • 7Nguyen T, Armitage G. Training on multiple sub-flows to optimise the use of Machine Learning classifiers in real-world IP networks. In: Proc. of the 31 st IEEE LCN 2006. Tampa, 2006. http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4116573.
  • 8Eerman J, Mahanti A, Arlitt M. Internct traffic identification using machine learning techniques. In: Proc. of the 49th IEEE GLOBECOM. San Francisco, 2006. http://pages.cpsc.ucalgary.ca/-mahanti/papers/globecom06.pdf.
  • 9Erman J, Arlitt M, Mahanti A. Traffic classification using clustering algorithms. In: Proc. of the ACM SIGCOMM Workshop on Mining Network Data (MineNet). Pisa, 2006. http://conferences.sigcomm.org/sigcomm/2006/papers/minenet-01.pdf.
  • 10Bernaille L, Teixeira R, Salamatian K. Early application identification. In: Proc. of the Conf. on Future Networking Technologies 2006 (CoNEXT 2006). Lisboa, 2006. http://portal.acm.org/citation.efm?id=1368445.

共引文献170

同被引文献31

  • 1屠金路,金瑜,王庭照.bootstrap法在合成分数信度区间估计中的应用[J].心理科学,2005,28(5):1199-1200. 被引量:12
  • 2CALLADO A, KAMIENSKI C, traffic identification [ J]. IEEE C als, 2009, 11(3): 37-52.
  • 3SZABO G. A survey on lnternet Surveys and Tutori- SEN S, SPATSCHECK O, WANG D. Accurate scalable in network identification of P2P traffic using application signatures [ C]// Pro- ceedings of the 13th International Conference on World Wide Web. New York: ACM, 2004:512-521.
  • 4ZANDER S, NGUYEN T, ARMITAGE G. Automated traffic classi- fication and application identification using machine learning [ C]// Proceedings ot the 30th Conference on Local Compuler Networks. Piscataway: IEEE, 2005:1-8.
  • 5ERMAN J, ARLITT M, MAHANTI A. Traffic classification using clustering algorithms [ C ]// Proceedings of the 2006 SIGCOMM Workshop on Mining Network Data. New York: ACM, 2006:11 - 15.
  • 6KARAGIANNIS T, PAPAGIANNAKI D, FALOUTSOS M. BLINC: Multilevel traffic classification in the dark [ J]. Computer Communi- cation Review, 2005, 35(4): 229-240.
  • 7DEWAELE G, HIMURA Y, BORGNAT P. Unsupervised host be- havior classification from connection patterns [ J]. International Jour- nal of Network Management, 2010, 20(5) : 317 -337.
  • 8WEI L, MOORE W, CANINI M. Classifying HTI'P traffic in the new age [ C ]// Conference of the Special Interest Group on Data Communication 2008. New York: ACM, 2008:479-480.
  • 9FLOYD S, PAXSON V. Difficulties in simulating the Internet [ J]. IEEE/ACM Transactions on Networking, 2001, 9(4): 392 -403.
  • 10SOULE A, LAKHINA A, TAFT N, et al. Traffic matrices: balan- cing measurements, inference and modeling [ J]. ACM SIGMET- RICS Performance Evaluation Review, 2005: 33( 1 ) : 362 - 373.

引证文献5

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部