期刊文献+

自适应半监督边界费舍尔分析 被引量:1

Adaptive Semi-supervised Marginal Fisher Analysis
下载PDF
导出
摘要 基于图的半监督算法已经成功地应用于人脸识别中,算法不仅考虑带标签数据而且利用一致性的假设。传统的算法一致性约束是定义在原特征空间中,但是在原特征空间中定义的一致性不是最好的。提出了自适应半监督边界费舍尔分析算法,它将一致性约束定义在原特征空间和期望低维特征空间中。在CMU PIE和YALE-B数据库上进行了实验,结果表明自适应半监督边界费舍尔分析算法在人脸识别率上有显著的提高。 Graph based semi-supervised methods have successfully used in face recognition.These algorithms not only consider the label information,but also utilize a consistency assumption.Conventional algorithms assumed that the consistency constraint is defined on the original feature space.However,the original feature space is not the best for defining consistency.We proposed adaptive semi-supervised marginal fisher analysis(ASMFA) by which the consistency constraint is defined in the original feature space and the expected low-dimensional feature space.Experimental results on the CMU PIE and YALE-B databases demonstrate that ASMFA brings signification improvement in face recognition accuracy.
出处 《计算机科学》 CSCD 北大核心 2011年第3期252-253,262,共3页 Computer Science
基金 国家自然科学基金项目(60875029)资助
关键词 判别结构 半监督 边界费舍尔分析 Discriminant structure Semi-supervised Marginal fisher analysis
  • 相关文献

参考文献7

  • 1陈伏兵,谢永华,严云洋,杨静宇.分块PCA鉴别特征抽取能力的分析研究[J].计算机科学,2006,33(3):155-159. 被引量:17
  • 2Sets D L, Weng J. Using Discriminant Eigenfeatures for image Retrieval[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1996,18 (8) : 831-836.
  • 3He Xiaofei, Yan Shuicheng, Hu Yuxiao, et al. Face Recognition Using I.aplacianfaces[J]. IEEE Trans on Patlern Analysis and Machine Intelligence, 2005,27 (3) : 328-340.
  • 4Yan Shuicheng, Xu Dong, Zhang Benyu, et al. Graph Embedding and Extensions: A General Framework for Dimensionality Reduction[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2007,29 (1) : 40-51.
  • 5Chen H T,Chang H W, Liu T L. Local discriminant embedding and its variants[J]. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005, 2(1): 846-853.
  • 6Cai Deng, He XiaoF, Han J W. Semi-supervised discriminant analysis[C]//Proc, of the IEEE Int' 1 Conf. on Computer Vision. Rio de Janeiro,2007.
  • 7Xu Dong, Yan Shui-cheng. Semi-supervised Bilinear Subspace Bilinear Subspace Learning [J]. IEEE Trans. on Image Processing, 2009,19(7):1671-1676.

二级参考文献20

  • 1杨健,杨静宇,叶晖.Fisher线性鉴别分析的理论研究及其应用[J].自动化学报,2003,29(4):481-493. 被引量:97
  • 2边肇祺 张学工.模式识别(第二版)[M].北京:清华大学出版社,1999.224-227.
  • 3Yang Jian,Yang Jing-Yu .Why can LDA be performed in PCA transformed space? [J].Pattern Recognition,2003,36:563~566.
  • 4Sirovich L,Kirby M.Low-Dimensional Procedure for Characterization of Human Faces.J Optical Soc Am,1987,4:519~524.
  • 5Kirby M,Sirovich L.Application of the KL Procedure for the Characterization of Human Faces.IEEE Trans Pattern Analysis and Machine Intelligence,1990,12(1):103~108.
  • 6Turk M,Pentland A.Eigenfaces for Recognition.J Cognitive Neuroscience,1991,3(1):71~86.
  • 7Hong Z Q,Yang J Y,et al.Optimal discriminant plane for a small number of samples and design method of classifier on the plane [J].Pattern Recognition,1991,24 (4):317~324.
  • 8Liu K,Yang J-Y,et al.An efficient algorithm for Foley-Sammon optimal set of discriminant vectors by algebraic method [J].International Journal of Pattern Recognition and Artificial Intelligence,1992,6(5):817~829.
  • 9Liu K,Cheng Y-Q,Yang J-Y,et al.Algebraic feature extraction for image recognition based on an optimal discriminant criterion [J] .Pattern Recognition,1993,26(6):903~911.
  • 10Chen Li-Fen,Mark Liao H-Y,Ko M-T,et al.A new LDA-based face recognition system which can solve the small sample size problem [J].Pattern Recognition,2000,33 (10):1713~1726.

共引文献16

同被引文献3

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部