期刊文献+

基于模板更新的自适应Mean-shift跟踪算法 被引量:2

Template Updating Based Adaptive Tracking Algorithm Using Mean-shift
下载PDF
导出
摘要 提出了一种利用Mean-shift算法处理目标跟踪定位,并以SIFT特征点匹配结果的最小二乘模型来求解缩放系数和更新目标模型的自适应跟踪方法。该方法实现了目标的快速跟踪,解决了模板更新和目标的尺度缩放问题。实验结果表明,该算法在处理目标尺度变化较大的情况下具有很强的鲁棒性。 This paper proposed an adaptive tracking algorithm in which the Mean-shift algorithm is taken to obtain target position.Among this framework,the target model is updated by analyzing the results of SIFT points matching using least-squares model.This algorithm can fast track target with the advantages that the template updating and the finding of scale coefficients are implemented at the same time.The experimental results show that the algorithm is very robust to the cases that the scales of target vary largely.
出处 《计算机科学》 CSCD 北大核心 2011年第3期271-274,共4页 Computer Science
基金 航空科学基金(20085179008)资助
关键词 目标跟踪 均值漂移 SIFT点 尺度变化 最小二乘模型 Target tracking Mean-shift SIFT point Scales variant Least-squares mode
  • 相关文献

参考文献11

  • 1Leoputra W, Tan T, Lira F L. Non-overlapping Dstributed Tracking Using Particle Fiher[C]//International Conference on Pattern Recognition(ICPR). 2006 : 181-185.
  • 2Fazli S, Pour H M, Bouzari H. Particle Filter-based Object Tracking with Si~t and Color Feature[C]//International Confer enee on Machine Vision(ICMV). 2009:89-93.
  • 3Comaniciu D,Meer P. Mean shift:a robust approach toward lea ture space analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002,24(5):603-619.
  • 4Fashing M, Tomasi C. Mean-shift is a bound optimization[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005,27 (3) : 471-474.
  • 5Hu Xue-long, Tang Yingcheng, Zhang gheng-hua. Video object matching based on SIFT algorithm [ C]// International Conference on Neural Networks and Signal Processing (ICNNSP). 2008:412 415.
  • 6Lowe D G. Object recognition from local scale-invariant features [C] // International Conference on Computer Vision, ICCV. 1999:1150-1157.
  • 7Lowe D G. Distinctive image features from scale-invariant keypoints[J] International Journal of Computer Vision, 2004, 60 (2):91-110.
  • 8Zhou Hui-yu, Yuan Yuan. Object tracking using SIFT features and mean shift[J]. Computer Vision and Image Understanding, 2009,113(3) : 345-352.
  • 9Comanieiu D, Ramesh V, Meer P. Kernel based object tracking [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI, 2003,25 (5): 564-577.
  • 10杨心力,杨恢先,曾金芳,于洪.基于尺度不变特征变换的Mean-Shift目标跟踪[J].计算机应用,2009,29(10):2678-2680. 被引量:1

二级参考文献17

  • 1Horn B. Optical flow[J]. Artificial Intelligence, 1981, 17:185- 203.
  • 2Nummiaro K, Koller-Meier E, Gool L J V. An adaptive colorbased particle filter[J]. Image Vision Comput, 2003,21 (1): 99- 110.
  • 3Vander Merwe R, Doucet A, de Freitas N, et al. The Unscented Particle Filte[R]. CUED/F-INPENG/TR 380. London: Cambridge University Engineering Department, 2000.
  • 4Gordan N, Salmond D, Smith A. A novel approach to nonlinear/ nonGaussian Bayesian state estimation[J]. IEEE Proeeedings on Radar and Signal Processing, 2005,118 : 187-113.
  • 5Doucet A , de Freitas N , Gordon N. Sequential Monte Carlo Methods in Practice[M]. New York: Springer-Verlag, 2001.
  • 6YILMAZ A. Object tracking: A survey[ J]. ACM Computing Surveys, 2006, 38(4) : 13.
  • 7COMANICIU D, RAMESH V, MEER P. Real - time tracking of non-rigid objects using mean-shift [ C]// IEEE Conference on Computer Vision and Pattern Recognition. [ S. l. ] : IEEE Press, 2000, 2: 142 - 149.
  • 8ZHOU HUI-YU, YUAN YUAN, SHI CHUN-MEI. Object traeking using SIFT features and mean shift[ J]. Computer Vision and hnage Understanding, 2009.113(3) : 345 - 352.
  • 9SEVILMIS T, BASTAN M GUDUKBA Y Uet al. Automatic detection of salient objects and spatial relations in videos for a video database system[ J]. Image and Vision Computing, 2008, 26(10) : 1384 - 1396.
  • 10BHATTACHARYYA S, MAULIK U. High-speed target tracking by fuzzy hostility-included segmentation of optical flow field[ J]. Applied Soft Computing, 2009, 9:126 -134.

共引文献4

同被引文献19

  • 1朱永松,国澄明.基于相关系数的相关跟踪算法研究[J].中国图象图形学报(A辑),2004,9(8):963-967. 被引量:38
  • 2朱胜利,朱善安.基于卡尔曼滤波器组的Mean Shift模板更新算法[J].中国图象图形学报,2007,12(3):460-465. 被引量:20
  • 3ADAM A,RIVIUN E,SHIMSHONI I. Robust fragments-based tracking using the integral histogram[A].Washington,DC:[EEE Computer Society,2006.798-805.
  • 4PORIKLI F. Integral histogram:A fastway to extract histograms in Cartesian spaces[A].Washington,DC:IEEE Computer Society,2005.829-836.
  • 5ISHIKAWA T,BAKER S. Thetemplate update problem[J].IEEE Transaetions on Pattern Analysis and Machine Intelligence,2004,(06):810-815.
  • 6NGUYEN H T,WORRING M,VAN D B R. Occlusion robust adaptive template tracking[A].Washington,DC:IEEE Computer Society,2001.678-683.
  • 7ADAM A. Fragtrack-robust fragments-based tracking using the integral histogram[DB/OL].http://www.cs.technion.ac.il/-amita/fragtrack/fragtrack.htm,2011.
  • 8European commission's information society technologies programme. CAVIAR project[DB/OL].http://groups.inf.ed.ac.u k/vision/caviar/caviardatal/,2011.
  • 9安国成,吴镇扬.基于先验知识模板更新的头部跟踪算法[J].光电工程,2008,35(6):10-14. 被引量:3
  • 10覃剑,曾孝平,曾浩.均值漂移跟踪的双模板更新算法[J].计算机应用研究,2009,26(7):2771-2773. 被引量:6

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部