期刊文献+

伪随机数质量对简单粒子群优化算法性能的影响

On the Impact of Pseudo-random Number Quality on Simple Particle Swarm Optimization Performance
下载PDF
导出
摘要 伪随机数对粒子群优化算法的性能影响主要体现在算法种群多样性上。低质量的伪随机数会导致粒子群优化算法的性能出现不稳定的现象,通过对几种典型伪随机数的分析比较之后得出,粒子编码长度和伪随机数的周期的相互作用才是导致算法不稳定的原因。相关实验也验证了这一结果。 Pseudo-random number on the performance of PSO algorithm is mainly reflected in the diversity of the population.Low-quality pseudo-random number will lead to the performance of PSO instability phenomenon,through the typical pseudo-random number drawn after analysis and comparison of the particle and pseudo-random number code length interaction cycle is the result algorithm for the cause of instability.Experiments also confirmed this result.
作者 谭阳
出处 《湖南广播电视大学学报》 2011年第1期48-51,共4页 Journal of Hunan Radio and Television University
基金 湖南省自然科学基金(06JJ50107)
关键词 伪随机数 粒子群优化算法 种群多样性 海明距离 pseudo-random number particle swarm optimization species diversity hamming distance
  • 相关文献

参考文献9

  • 1Knuth D E. The Art of Computer Programming[ M]. USA: Addison - Wesley, 1998.
  • 2Marsaglia G, Zaman A. A New Class of Random Number Generators [ J ]. Annals of Applied Probability, 1991, 1 (3) : 462 - 480.
  • 3Kennedy J, Eberhart R C. Particle Swarm Optimization [ C]. Proc IEEE International Conference on Neural Networks. Piscataway, NJ: IEEE Service Center, 1995:1942 - 1948.
  • 4Meysenburg M M, Hoehing D, McElvain D, et al. How Random Generator Quality Impacts GA Performance [ C ]. Proceedings of the Genetic and Evolutionary Computation Conference, 2002. San Francisco USA: Morgan Kaufmann Publishers, 2002 : 480 - 487.
  • 5李东,汪定伟.基于仿真的优化方法综述[J].控制工程,2008,15(6):672-677. 被引量:22
  • 6江维,沈斌,胡中功.微粒群算法参数的理论分析[J].化工自动化及仪表,2009,36(4):38-40. 被引量:7
  • 7朱奇光,王洪瑞.IC-PSO算法的收敛性分析及应用研究[J].光电工程,2010,37(4):108-112. 被引量:4
  • 8Mattiussi C, Waibel M, Floreano D. Measures of Diversity for Populations and Distances Between Individuals with Highly Recognizable Genomes [ J ]. Evolutionary Computation, 2004, 12(4) : 495 -515.
  • 9Cantu - Paz E. On Random Numbers and the Performance of Genetic Algorithms [ C ]. Proceedings of the Genetic and Evolutionary Computation Conference, 2002. San Francisco USA : Morgan Kaufmann Publishers, 2002 : 311 - 318.

二级参考文献68

  • 1刘波,王凌,金以慧,黄德先.微粒群优化算法研究进展[J].化工自动化及仪表,2005,32(3):1-7. 被引量:39
  • 2宋恒杰,马萍,杨明,王子才.基于隐Markov模型的复杂仿真系统运行有效性评价方法及应用[J].控制与决策,2006,21(5):567-571. 被引量:2
  • 3曹继红,简水生,陈勇,刘艳,谭中伟.基于线性啁啾光纤光栅色散补偿的2500km-10Gbps无电中继传输系统[J].光电工程,2006,33(9):101-105. 被引量:5
  • 4陈国初,俞金寿.两群微粒群优化算法及其应用[J].控制理论与应用,2007,24(2):294-298. 被引量:23
  • 5Al-Awami A T, Abdel-Magid Y L, Abido M A. A particle-swarm-based approach of power system Stability enhancement with unified power flow controller[ J]. International Journal of Electrical Power & Energy Systems, 2007, 29(3): 251-259.
  • 6Lian Z G, Jiao B, Gu X. A similar particle swarm optimization algorithm for job-shop scheduling to minimize makespan[J]. Applied Mathematics and Computation, 2006, 183(2) : 1008-1017.
  • 7Jatmiko W, Sekiyama K, Fnkuda T. A PSO-based mobile sensor network for odor source localization in dynamic environment: theory, simulation and measurement [ C ]. Vancouver: 2006 IEEE Congress on Evolutionary Computation, 2006.
  • 8Zhang H, Tam C M, Li H, et al. Particle swarm optimization-supported simulation for construction operations[J]. Journal of Construction Engineering and Management, 2006, 132(12) : 1267-1274.
  • 9Olafsson S, Gopinath N. Optimal selection probability in the Iwo-stage nested partitions method for simulation-based optimization[C]. Orlando: 2000 Winter Simulation conference, 2000.
  • 10Law A M, McComas M G. Simulation-based opotimization [ C]. Orlando : 2000 Winter Simulation Conference, 2000.

共引文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部