期刊文献+

数据流中随机型分形维数计算方法研究

Research of Stochastic Fractal Dimension Calculation Algorithm in Data Stream
下载PDF
导出
摘要 分形维数能够有效地描述数据集,反映复杂数据集中隐含的规律性,基于分形理论的数据挖掘算法通常都涉及到分形维数的计算。但是现有的分形维数计算方法的时间复杂度和空间复杂度都比较高,大大降低了算法的效率,使算法很难适应高速、海量的数据流环境。因此,总结分析了现有的几种分形维数计算方法,并提出一种随机型方法,利用固定的内存空间快速估计数据流的关联维数。最后通过与现有算法进行对比实验,证明了这一随机型算法的有效性。 Fractal dimension can describe the data set effectively and can reflect the hidden regularity of the complex data set.Data mining algorithms based on fractal theory are usually related to the calculation of fractal dimension.But most of the existing fractal dimension calculation algorithms are with high time complexity and space complexity,which greatly reduces the efficiency and is not applicable for data stream with high-speed and massive data.In this paper,se-veral existing fractal dimension calculation algorithms were analyzed and a stochastic fractal dimension calculation algorithm were proposed to fast estimate the correlation dimension in fixed space.The comparative experiment and analysis demonstrate the effectiveness of this stochastic fractal dimension calculation algorithm.
出处 《计算机科学》 CSCD 北大核心 2011年第4期209-212,229,共5页 Computer Science
基金 国家自然科学基金(70871033 70801025) 国家高技术研究发展计划(863)(2007AA04Z116) 合肥工业大学校科学研究发展基金(2009HGXJ0040)资助
关键词 分形 分形维数 数据流 Fractal Fractal dimension Data stream
  • 相关文献

参考文献12

  • 1倪丽萍,倪志伟,吴昊,叶红云.基于分形维数的数据挖掘技术研究综述[J].计算机科学,2008,35(1):187-189. 被引量:7
  • 2鲍玉斌,王琢,孙焕良,于戈.一种基于分形维的快速属性选择算法[J].东北大学学报(自然科学版),2003,24(6):527-530. 被引量:14
  • 3闫光辉,李战怀,党建武.基于多重分形的聚类层次优化算法[J].软件学报,2008,19(6):1283-1300. 被引量:15
  • 4Traina C, Traina A, Wu L, et al. Fast feature selection using fractal dimension[C].//Proc. XV Brazilian Symposium on Databases. 2000.
  • 5Barbara D, Chen P. Using the Fractal Dimension to Cluster Datasets [C]. // Proceedings of the Sixth ACM SIGKDD. International Conference on Knowledge Discovery and Data Mining. 2000.
  • 6de Sousa E P M,Traina A J M,Traina J C. SID:Calculating the Intrinsic Dimension of Data Streams [C]. // Proceedings of the 2006 ACM Symposium on Applied Computing. 2006.
  • 7Wong A, Wu L J,Gibbons P B,et al. Fast Estimation of Fractal Dimension and Correlation Integral on Stream Data[J]. Infaomation Processing Letters, 2005,93 (2): 91-97.
  • 8Aton N, Matias Y, Szegedy M. The space complexity of approximating the frequency moments[C].//1996 ACM Symposium on Theory of Computing. Philadelphia, 1996:22-24.
  • 9Thorup M, Zhang Yin. Tabulation Based 4-Universal Hashing with Applications to Second Moment Estimation[C].//Proceedings of the Fifteenth Annual ACM-SIAM Symposium on Dis crete Algorithms. 2004,18:608-617.
  • 10Anna O, Rasmus P. Uniform Hashing in Constant Time and Linear Space[C].//Proeeedings of the Annual ACM Symposium on Theory of Computing. 2003 : 622-628.

二级参考文献30

共引文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部