期刊文献+

一种用于特征提取的保局判别分析算法

Locality Preserving Discriminant Analysis Algorithm for Feature Extraction
下载PDF
导出
摘要 针对保局投影(LPP)为无监督算法的局限,提出了一种新的监督版的LPP,即保局判别分析(LPDA)算法。LPDA吸收了流形学习算法与最大边界准则(MMC)的共同特点,可以将高维的人脸数据投影到低维子空间,具有能处理新样本与无小样本问题的优点。与现有的多种经典相关方法相比,从Yale,UMIST及MIT 3个人脸数据库的实验结果表明,提出的LPDA算法在降维的同时提取了用于人脸识别的更有效的特征,人脸图像识别性能较好,具有较强的判别分析能力。 To address the limitation that locality preserving projection(LPP) algorithm belongs to unsupervised,a novel approach,named as locality preserving discriminant analysis(LPDA) was proposed.LPDA algorithm absorbs the common characteristics of the manifold learning algorithm and maximum margin criterion(MMC),and can project the high-dimensional face data into the low-dimensional subspace.The new sample can be processed and the small sample size problem can be prevented.Compared with several classical and related methods,the experimental results from Yale,UMIST and MIT face databases show that LPDA algorithm can extract the more efficient features for face recognition while the dimensionality is reduced,and obtains much higher recognition accuracies and stronger power of classification.
出处 《计算机科学》 CSCD 北大核心 2011年第4期272-274,285,共4页 Computer Science
基金 国家自然科学基金重点项目(60933009) 陕西省科技攻关项目(2009K01-56)资助
关键词 保局投影 最大边界准则 特征提取 人脸识别 流形学习 Locality preserving projection Maximum margin criterion Feature extraction Face recognition Manifold learning
  • 相关文献

参考文献21

  • 1Qi Y F, Zhang J S. (2D)2PCALDA: An efficient approach for face recognition[J]. Applied Mathematics and Computation, March 2009(In Press).
  • 2Yan Y, Zhang Y J. A novel class-dependence feature analysis method for face recognition [J]. Pattern Recognition Letters, 2008,29(14) : 1907-1914.
  • 3Hotta K. Robust face recognition under partial occlusion based on support vector machine with local Gaussian summation kernel [J]. Image and Vision Computing,2008,26(11) : 1490-1498.
  • 4Hamidreza R K, Karim F. GA-based optimal selection of PZMI features for face recognition [J]. Applied Mathematics and Computation, 2008,205 (2) : 706 715.
  • 5Jolliffe I T. Principal Component Analysis [M]. New York: Springer, 1986.
  • 6Etemad K, Chellapa R. Discriminant analysis for recognition of human face images [J]. J. Opt. Am, 1997,A 14(8):1724-1733.
  • 7MartoAnez A M,Kak A C. PCA versus LDA [J]. IEEE Trans.Pattern Anal. Mach. Intell. , 2001,23(2) :228-233.
  • 8Li H,Jiang T, Zhang K. Efficient and robust feature extraction by maximum margin criterion [J]. IEEE Trans. Neural Networks,2006,17(1).
  • 9Tenenbaum J B, Silva V, Langford J C. A global geometric framework for nonlinear dimensionality reduetion[J]. Science, 2000,290 (5500) : 2319-2323.
  • 10Roweis S T, Saul L K. Nonlinear dimensionality reduction by locally linear embedding[J]. Science, 2000,290 (5500) : 2323-2326.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部