期刊文献+

随机设计下非参数回归模型方差变点检验 被引量:3

Test for the variance change in nonparametric regression model in a random design
下载PDF
导出
摘要 目的研究随机设计下非参数回归模型方差变点检验。方法用局部多项式方法估计回归曲线得到残差序列,基于残差序列的平方构造CUSUM检验统计量,推导检验统计量的极限分布。结果在一定条件下证明了原假设下检验统计量收敛于Brown桥的上确界。结论局部多项式方法同时适用于随机设计与固定设计数值,方法性是有效性的。 Aim To test the variance change in nonparametric regression model in a random design.Methods The residual sequence is obtained by local linear methods and the CUSUM of squares test statistics is established based on the square of residual.Results It is shown that under certain conditions,the distribution of the test statistics converges at the supremum of a standard Brown bridge.Conclusion Local linear model can be used in random design and fixed dosign.The method turns out to be effective after being tested on simulated examples.
出处 《西北大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第1期15-18,共4页 Journal of Northwest University(Natural Science Edition)
基金 陕西省教育厅基金资助项目(2010JK561) 西安工程大学基础研究基金资助项目(2010JC07) 陕西省"13115"科技创新工程基金资助项目(2009ZDTG-85)
关键词 非参数回归模型 随机设计 方差变点 Brown桥 nonparametric regression model random design variance change Brown bridge
  • 相关文献

参考文献6

  • 1LEE S,NA 0,NA S.On the CUSUM of squares test for variance change in nonstationary and nonparametric re-gression time series models[J].Annals of the Institute of Statistical Mathematics,2003,55(3):467-485.
  • 2YAO Q,TONG H.Cross-validatory bandwidth selections for regression estimation based on dependent data[J].Journal of Statistical Planning and Inference,1998,66:387-415.
  • 3BILLINGSLEY P.Convergence of probability measure[M].New York:John Wiley,1968.
  • 4林正炎,陆传荣,苏中根.概率极限基础[M].北京:高等教育出版社,2003.
  • 5CSORGO M,R(E)V(E)SZ P.Strong Approximation in Proba-bility and Statistics[M].New York; Academic Press,1981.
  • 6BERKES I,GOMBAY I,HORV(A)TH L.Testing for chan-ges in the covariance structure of linear process[J].Jour-nal of Statistical Planning and Inference,2009,139:2044-2063.

同被引文献24

  • 1甘登文.半相依回归模型中回归系数新估计的效率[J].江西师范大学学报(自然科学版),1993,17(2):127-130. 被引量:1
  • 2Hsu D A Miller R B and Wichern D W. On the stable paretian behavior of stock market prices[J]. Journal of the American statistical association, 1974, 69: 108-113.
  • 3Hsu D A A. Bayesian robust detection of shift in the risk structure of stock market returns[J]. Journal of the American statistical association, 1982, 77: 29-39.
  • 4Inclan C and Tiao G C. Use of cumulative of sums squares for retrospective detection of changes of variance[J]. Journal of the American statistical association, 1994, 89: 913-923.
  • 5Gombay E, Horvath L and Huskovd M. Estimators and tests for change in the variance[J]. Statistics and Decisions, 1996, 14: 145-159.
  • 6Wichern D W, Miller R B and Hsu D A. Changes of variance in first-order autoregressive time series mod els-with an application[J]. Appl Statist, 1976, 25: 248-256.
  • 7Abraham B, Wei W W. S Inference about the parameters of a time series model with changing variance[J]. Metrik, 1984, 31:183-194.
  • 8Horvath L and Steinebach J. Testing for changes in the mean or variance of a stochastic process under weak invariance[J]. Journal of statistical planning and inference, 2000, 91:365-376.
  • 9Lee S, and Park S. The cusum of squares test for scale changes in infinite order moving averageprocess[J]. Scand J Statist, 2001, 28: 625-644.
  • 10Zhao W Z, Tian Z and Xia Z M. Ratio test to detect change in the variance of linear process[J]. Statistics, 2011, 45(2): 189-198.

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部