期刊文献+

个性化推荐系统描述文件攻击检测方法 被引量:3

Inspection Method of the Attack on Personalized Recommendation System Description File
下载PDF
导出
摘要 个性化推荐系统能产生针对性的、个性化的信息来满足不同用户需求,但也很容易受到用户描述文件注入恶意攻击,影响正常的推荐结果。针对该问题,分析和研究了描述文件的形式化模型、描述文件的属性及分类方法,应用粗糙集理论,设计了数据预处理离散化、决策表约简和个性化推荐处理相应算法,提出了一种用户描述文件分类学习和攻击检测的方法;为降低攻击对推荐结果的影响,完善了推荐系统的安全,设计出一种动态交互的个性化推荐模型框架。实例证明,用户描述文件的属性分类及检测方法是有效的,准确率高,能够有效地改善个性化推荐系统模型的安全。 Personalized recommendation system can satisfy the users' demand with pertinent and personalized information, but it is easy to be attacked maliciously by the description file, which will influence the recommendation result. The attribute, model, and classification method of the description files are analyzed and studied. The rough set theory is used to design an algorithm of data pretreatment discretization, decision table reduction, and personalized recommendation treatment. The method of description file classification and attack detection is proposed. The safety of the recommendation system is improved to decrease the influence of the attack on the recommendation results. The frame of personalized recommendation model with dynamic interaction is considered. The example verification proves that the model, the attribute classification, and the detection method of the description flies are effective with high accuracy and can effectively improve the safety of the personalized recommendation system.
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2011年第2期250-254,共5页 Journal of University of Electronic Science and Technology of China
基金 四川省科技厅科研项目(2009zr0159)
关键词 分类 描述文件 检测 推荐系统 粗糙集理论 classification description file inspection recommender system rough set theory
  • 相关文献

参考文献10

  • 1O'DONOVAN J,SMYTH B.Is trust robust?:an analysis of trust-based recommendation[C]//Proceedings of the 11th International Conference on Intelligent User Interfaces.New York,USA:ACM Press,2006.
  • 2CHIRITA P A,NEJDL W,ZAMFIR C.Preventing shilling attacks in online recommender systems[C]//Proceedings of the 7th Annual ACM International Workshop on Web Information and Data Management.New York,USA:ACM Press,2005.
  • 3SU Xue-feng,ZENG Hua-jun,CHEN Zheng.Finding group shilling in recommendation system[C]//Proceedings of the 14th International Conference on World Wide Web.New York,USA:ACM Press,2005.
  • 4BURKE R,MOBASHER B,WILLIAMS C,et al.Detecting profile injection attacks in collaborative recommender systems[C]//Proceedings of the 8th IEEE International Conference on E-Commeree Technology and The 3rd IEEE International Conference on Enterprise Computing,E-Commerce,and E-Services (CEC/EEE' 06).Washington D C,USA:IEEE Computer Society,2006.
  • 5O'MAHONY M P,HURLEY N,KUSHMERICK N,et al.Collaborative recommendation:a robustness analysis[J].ACM Trasactions on Intemet Technology,2004,4(4):44-377.
  • 6WITTEN I H,FRANK E.Data mining:practical machine learning tools and techniques[M].2nd ed.San Francisco,CA,USA:Morgan Kaufmann,2005.
  • 7BURKE R,MOBASHER B,WILLIAMS C,et al.Classification features for attack detection in collaborative recommender systems[C]//Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York,USA:ACM Press,2006.
  • 8邹瑞芝,罗可,曾正良.基于粗糙集理论的决策树分类方法[J].计算机工程与科学,2009,31(10):112-114. 被引量:9
  • 9何发镁,王旭仁.基于检测响应的安全协同推荐系统研究[J].微计算机信息,2010,26(6):1-2. 被引量:3
  • 10WILLIAMS C.Profile injection attack detection for securing collaborative recommender systems[D].Chicago:DePaul University,2006.

二级参考文献15

共引文献9

同被引文献21

引证文献3

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部