期刊文献+

螺旋锥齿轮真实齿面偏差修正研究 被引量:3

Research on real tooth surface deviation correction of spiral bevel gear
下载PDF
导出
摘要 根据传统机械式的机床结构,运用4×4Denavit Hartenberg齐次变换矩阵、齿轮啮合理论等建立了成形法加工的螺旋锥齿轮齿面偏差识别方程,提出采用截断奇异值分解法(TSVD)与L曲线法求解识别方程,得到机床的修正参数,以指导六轴五联动数控螺旋锥齿轮机床的参数调整,从而达到对齿面偏差的修正。研究表明,采用此方法修正齿面偏差效果显著,这为提高螺旋锥齿轮的加工精度提供了另一条有效途径。 According to the structure of traditional mechanical machine,the tooth surface deviation identification model of forming method processing spiral bevel gear is established by the 4×4 Denavit-Hartenberg homogeneous transformation matrix,the gear meshing theory and so on.The interruption singular value resolution (TSVD) and the L curve law are proposed to solve identification equation and the machine revision parameters are obtained to adjust the parameter of 6-axis 5-linkage numerical control spiral bevel gear machine,and the deviation of tooth surface is revised.The results show that the remarkable effect on revision deviation of tooth surface to use the method.This study offers another efficient path for improving machining precision of spiral bevel gear.
出处 《制造技术与机床》 CSCD 北大核心 2011年第3期87-90,共4页 Manufacturing Technology & Machine Tool
基金 国家自然科学基金资助项目(50975291)
关键词 螺旋锥齿轮 齿面偏差 截断奇异值分解法 L曲线法 修正 Spiral Bevel Gear Tooth Surface's Deviation TSVD L Curve Law Revision
  • 相关文献

参考文献7

  • 1Stardtfeld H J. ttandhook of bevel and hypoid gears [ M ]. New York: Rochester Institute of technology, 1993.
  • 2Litvin F 1, Zhang Yi, Kieffer J, et al. Identification and minimization of deviations of real gear tooth surfaces [ J ]. Journal of Mechanical Design, ASME, 1991,113 ( 1 ) :55 -62.
  • 3Lin C Y, Tsay C B, Fong Z tt. Computer-aided manufacturing of spiral bevel and hypoid gears by applying optimization techniques[J].Journal of Materials Processing Technology, 2001,114( 1 ) :22-35.
  • 4AGMA 2009-AXX, bevel gear classification, tolerances and measuring methods[ S]. USA, American Gear Manufacturers Association, 1996.
  • 5Hansen P C. Truncated singular decomposition solutions to discrete Ⅲ- posed problems with Ⅲ-determined numerical rank [ J ]. SIAM J. Sci. Comput. , 1990,11 ( 3 ) :503,518.
  • 6Hansen P C. The use of the L-curve in the regularization of discrete Ⅲ -posed problems[J]. SIAM J. Sci. Comput. ,1993,14:1487-1503.
  • 7Hansen P C. Analysis of discrete Ill-posed problems by means of the L- [ J ]. SIAM Review, 1992,34 (4) :561 -580.

同被引文献8

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部