期刊文献+

宏微观双尺度运动裂纹模型面内拉伸下的解析解 被引量:1

Analytical solution of macro/micro dual scales moving crack model under in-plane tension
下载PDF
导出
摘要 研究裂纹动态扩展中宏微观因素相互作用机制与微观裂尖区的钝化效应。平面拉伸状态下,宏观主裂纹以恒定速度运动。通过一个介观约束应力过渡区,将宏观主裂纹与微观裂尖区相连接,由此建立了一个宏微观双尺度运动裂纹模型。应用弹性动力学与复变函数理论,分别在宏观与微观尺度下对该模型进行解析求解,获得了解析解。通过裂纹张开位移从宏观到微观的连续性条件与宏微观应力场协调条件,将两个不同尺度下的解相耦合,获得了计算宏微观损伤区特征长度的显式表达式。研究表明,运动裂纹的宏观应力场仍具有通常的r-1/2的奇异性。由于微观裂尖的钝化,微观应力场奇异性的阶次有所降低,与宏观应力场相比具有弱奇异性。双尺度运动裂纹模型中,可允许裂纹运动速度达到剪切波速,解除了经典运动裂纹理论中裂纹速度不能超过Rayleigh波速的限制。数值结果表明,介观损伤过渡区与裂尖微观损伤区尺寸,及裂纹张开位移等,与裂纹运动速度、材料性质、约束应力比、裂尖钝化角度等因素有关。 The interaction between macroscopic and microscopic factors and the blunting effect of crack tip during the crack dynamic propagation were investigated.A macroscopic crack moves with a constant speed under the in-plane tension.A microscopic V-notch tip is attached to the main crack through a mesoscopic restraining stress transition zone,and so a macro/micro dual scales moving crack model was thus developed.The problem was solved in accordance with the elastic dynamics and complex variable function theory and the analytical solution was then obtained.Two solutions under the macroscopic and microscopic scales were coupled by application of the continuity condition of crack opening displacement from macro to micro scale and the consistence condition of stress fields under two different scales.Two explicit equations to determine the mesoscopic and microscopic damage zone sizes were presented.It is shown that the macroscopic stress field of a moving crack has a normal r(1/2 singularity while comparatively,the microscopic stress field exhibits a weaker singularity due to the microscopic blunting effect of the crack tip.The crack moving speed can reach the shear wave speed in the dual scales moving crack model.Therefore,the limitation that the crack moving speed can not exceed the Rayleigh wave speed in the classical moving crack theory can be cancelled.The numerical results show that the mesoscopic damage zone size,microscopic crack tip zone size and crack opening displacement depend on the crack moving speed,material property,restraining stress ratio and blunting angle of the crack tip,etc.
作者 唐雪松
出处 《振动与冲击》 EI CSCD 北大核心 2011年第3期100-108,共9页 Journal of Vibration and Shock
基金 教育部博士点基金(200805360002)资助
关键词 运动裂纹 弹性动力学 介观断裂力学 约束应力区 双尺度裂纹模型 moving crack elastic dynamics mesoscopic fracture mechanics restraining stress zone dual scales crack model
  • 相关文献

参考文献21

  • 1M. P. Malezhik,O. P. Malezhik,A. I. Zirka,I. S. Chernyshenko.Stress wave fields in plates weakened by curvilinear holes with edge cracks[J]. International Applied Mechanics . 2006 (2)
  • 2S. Itou.Stress intensity factors for a moving cylindrical crack in a nonhomogeneous cylindrical layer in composite materials[J]. Archive of Applied Mechanics . 2005 (1)
  • 3K. Uenishi,H. P. Rossmanith.Stability of dynamically propagating cracks in brittle materials[J]. Acta Mechanica . 2002 (3-4)
  • 4A. N. Guz’.Moving Cracks in Composite Materials with Initial Stresses[J]. Mechanics of Composite Materials . 2001 (5-6)
  • 5Dr. J. K. Dienes.Crack dynamics via Lagrange’s equations and generalized coordinates[J]. Acta Mechanica . 2001 (1-4)
  • 6K.-C. Wu.Dynamic crack growth in anisotropic material[J]. International Journal of Fracture . 2000 (1)
  • 7P. D. Washabaugh,W. G. Knauss.A reconciliation of dynamic crack velocity and Rayleigh wave speed in isotropic brittle solids[J]. International Journal of Fracture . 1994 (2)
  • 8N. Vasudevan,W. G. Knauss.An approximate analysis of the effect of micro fractures on the caustic of a dynamically moving crack tip[J]. International Journal of Fracture . 1988 (2)
  • 9Tang X S,Sih G C.Weak and strong singularities reflectingmultiscale damage:micro-boundary conditions for free-free,fixed-fixed and free-fixed constraints. Theoretical andApplied Fracture Mechanics . 2005
  • 10Sih G C,Tang X S.Asymptotic micro-stress field dependencyon mixed boundary conditions dictated by micro-structuralasymmetry;Mode I macro-stress loading. Theoretical andApplied Fracture Mechanics . 2006

同被引文献20

  • 1Yoffe E Y. The moving griffith crack [ J ]. Philosophical Magazine, 1951, 42(7) : 739 -750.
  • 2Hu Ke-qiang, Li Guo-qiang. Constant moving crack in a magnetoelectroelastic material under anti-plane shear loading [ J]. International Journal of Solids and Structures, 2005, 42(9 - 10) : 2823 -2835.
  • 3Hermann K P, Komarov A V, Loboda V V. On a moving interface crack with a contact zone in a piezoelectric bimaterial [ J ]. International Journal of Solids and Structures, 2005, 42( 16- 17): 4555-4573.
  • 4Lapusta Y, Komarov A, Labesse-Jied F, et al. Limited permeable crack moving along the interface of a piezoelectric bi-material [ J ]. European Journal of Mechanics-A/Solids, 2011, 30(5) : 639 -649.
  • 5Hu Ke-Qiang, Kang Yi-Lan, Qin Qing-Hua. A moving crack in a rectangular magnetoelectroelastic body [ J ]. Engineering Fracture Mechanics, 2007, 74(5) : 751 - 770.
  • 6Xie C, Liu Y W. Cracking characteristics of a moving screw dislocation near an interfacial crack in two dissimilar orthotropic media [ J ]. Theoretical and Applied Fracture Mechanics, 2008, 50(3): 214-219.
  • 7Sih G C, Jones R. Crack size and speed interaction characteristics at micro-, meso- and macro-scale [ J ]. Theoretical and Applied Fracture Mechanics, 2003, 39 (2) : 127 - 136.
  • 8Tang X S, Sih G C. Kinetics of microcrack blunting ahead of macrocrack approaching shear wave speed [ J ]. Theoretical and Applied Fracture Mechanics, 2004, 42(2) : 99 -130.
  • 9Rosakis A J, Samudrala O, Coker D. Cracksfaster than the shear wave speed [J]. Science, 1999, 284(5418) : 1337 - 1340.
  • 10Sih G C, Tang X S. Dual scaling damage model associated with weak singularity for macro-seopie crack possessing a micro-/meso-scopie notch tip [ J ]. Theoretical and applied fracture mechanics, 2004, 42 ( 1 ) : 1 - 24.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部