摘要
针对求解二维抛物型方程的三角网上线性有限体积元格式,证明了半离散和全离散格式的整体超收敛性,并得到了解梯度在插值应力佳点上的超收敛估计.数值算例验证了理论结果的正确性.
As for the linear finite volume element schemes for parabolic problems on triangulation,we proved that the superconvergence property held for the semi-discrete scheme and fully discrete scheme.Furthermore,the superconvergence of numerical gradients at optimal stress points was obtained.Finally numerical example was presented to confirm our theoretical results.
出处
《吉林大学学报(理学版)》
CAS
CSCD
北大核心
2011年第2期179-185,共7页
Journal of Jilin University:Science Edition
基金
国家自然科学基金(批准号:10971082
J0730101)
吉林大学基本科研业务费创新项目(批准号:200903285)和吉林大学青年教师创新项目
关键词
抛物型方程
应力佳点
有限体积元法
超收敛
parabolic problem
optimal stress point
finite volume element method
superconvergence