期刊文献+

解系数间断随机微分方程的Heun法

Heun Method for Numerically Solving Stochastic Differential Equations with Discontinuous Coefficients
下载PDF
导出
摘要 使用Heun法求解系数间断的随机微分方程,给出了数值计算格式,并讨论了格式的弱收敛性.数值实验表明,与Euler法相比,Heun法求解系数间断的随机微分方程收敛速度更快. We studied the numerical method for stochastic differential equations with discontinuous coefficients via Heun method. The numerical computational scheme was given to solve such a type of equations. The weak convergence of the method was also discussed. The numerical examples demonstrate that the convergence rate of Heun method was faster than that of Euler method.
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2011年第2期228-232,共5页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:10801062) 江苏省博士后科研资助计划项目(批准号:1002030C) 江苏大学高级专业人才科研启动基金(批准号:10JDG020)
关键词 Heun法 系数间断 随机微分方程 弱收敛 Heun method discontinuous coefficient stochastic differential equation weak convergence
  • 相关文献

参考文献8

  • 1Chan K S,Stramer O.Weak Consistency of the Euler Method for Numerically Solving Stochastic Differential Equations with Discontinuous Coefficients[J].Stochastic Process Their Appl,1998,76 (1):33-44.
  • 2Halidias N,Kloeden P E.A Note on the Euler-Maroyama Scheme for Stochastic Differential Equations with a Discontinuous Monotone Drift Coefficient[J].BIT Numerical Mathematics,2008,48 (1):51-59.
  • 3Stramer O.The Local Linearization Scheme for Nonlinear Diffusion Models with Discontinuous Coefficients[J].Statist Probab Lett,1999,42(3):249-256.
  • 4YAN Li-qing.The Euler Scheme with Irregular Coefficients[J].Ann Probab,2002,30(3):1172-1194.
  • 5Lejay A,Martinez M.A Scheme for Simulating One-Dimensional Diffusion Processes with Discontinuous Coefficients[J].The Annals of Applied Probability,2006,16(1):107-139.
  • 6Oksendal B.Stochastic Differential Equations:An Introduction with Applications[M].Berlin:Springer-Verlag,2003.
  • 7Kloeden P E,Platen E.Numerical Solution of Stochastic Differential Equations[M].Berlin:Springer-Verlag,1992.
  • 8Duffle D,Protter P.From Discrete to Continuous-Time Finance:Weak Convergence of the Financial Gain Process[J].Math Finance,1992,2(1):1-15.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部