期刊文献+

图C_m ∨ C_n的Smarandachely邻点可区别全色数 被引量:2

Smarandachely Adjacent Vertex Distinguishing Total Coloring of Graph C_m ∨ C_n
下载PDF
导出
摘要 图的一个正常全染色满足相邻点的色集合互不包含时被称为Smarandachely邻点可区别全染色.使图G存在使用了k种色的Smarandachely邻点可区别全染色的最小数k称为图G的Smarandachely邻点可区别全色数,其中任意一点的色集合为该点所染色与其关联边所染色的并.文章给出了当(m<n)且m为偶数时,m阶圈与n阶圈的联图的Smarandachely邻点可区别全色数. A proper total coloring of graphs,which satisfies the exclusion of each other among adjacent color's sets,is called Smarandachely adjacent vertex distinguishing total coloring.The minimal number k,which is used in Smarandachely adjacent vertex distinguishing total coloring for the existence of G,is called Smarandachely adjacent vertex distinguishing total chromatic number of graph G.Among them,any color's set is a union of colors to be assigned to the vertex and the incident edges.In this paper.Smarandachely adjacent vertex clistinguishing total chromatic number of graph Cm ∨ Cn(mn and m≡0(mod2)) is studied.
出处 《兰州交通大学学报》 CAS 2011年第1期142-144,共3页 Journal of Lanzhou Jiaotong University
基金 甘肃省教育厅科研项目(1004-01) 兰州市科技发展计划项目(2010-1-4)
关键词 联图 邻点可区别全染色 Smarandachely邻点可区别全染色 join graph adjacent vertex distinguishing total coloring Smarandachely adjacent vertex distinguishing total coloring
  • 相关文献

参考文献3

  • 1张婷,李沐春,徐保根,安常胜,左超.关于C_m×C_(5n)的全色数和邻强边色数[J].兰州交通大学学报,2007,26(6):124-126. 被引量:24
  • 2ZHANG Zhongfu,LI Jingwen,CHEN Xiang’en,YAO Bing, WANG Wenjie & QIU Pengxiang Institute of Applied Mathematic, Lanzhou Jiaotong University, Lanzhou 730070, China,College of Mathematics and Information Science, Northwest Normal University, Lanzhou 730070, China,College of Information and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China.D(β)-vertex-distinguishing total coloring of graphs[J].Science China Mathematics,2006,49(10):1430-1440. 被引量:56
  • 3ZHANG Zhongfu, CHEN Xiang’en, LI Jingwen, YAO Bing, LU Xinzhong & WANG Jianfang College of Mathematics and Information Science, Northwest Normal University, Lanzhou 730070, China,Department of Computer, Lanzhou Normal College, Lanzhou 730070, China,Institute of Applied Mathematics, Lanzhou Jiaotong University, Lanzhou 730070, China,College of Information and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China,Institute of Applied Mathematics, Chinese Academy of Sciences, Beijing 100080, China.On adjacent-vertex-distinguishing total coloring of graphs[J].Science China Mathematics,2005,48(3):289-299. 被引量:175

二级参考文献12

  • 1ZHANG Zhongfu, CHEN Xiang’en, LI Jingwen, YAO Bing, LU Xinzhong & WANG Jianfang College of Mathematics and Information Science, Northwest Normal University, Lanzhou 730070, China,Department of Computer, Lanzhou Normal College, Lanzhou 730070, China,Institute of Applied Mathematics, Lanzhou Jiaotong University, Lanzhou 730070, China,College of Information and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China,Institute of Applied Mathematics, Chinese Academy of Sciences, Beijing 100080, China.On adjacent-vertex-distinguishing total coloring of graphs[J].Science China Mathematics,2005,48(3):289-299. 被引量:175
  • 2张忠辅,强会英,晁福刚,王治文.关于C_n^4和C_n^5(n≡0(mod 5))的邻强边色数和全色数(英文)[J].兰州交通大学学报,2005,24(6):133-135. 被引量:3
  • 3张忠辅,李敬文,陈祥恩,程辉,姚兵.图的距离不大于β的任意两点可区别的边染色[J].数学学报(中文版),2006,49(3):703-708. 被引量:96
  • 4张忠辅,李敬文,赵传成,任志国,王建方.若干联图的点可区别均匀边色数[J].数学学报(中文版),2007,50(1):197-204. 被引量:15
  • 5Balister P N,Gyori E, Lehel J, et al. Adjacent vertexdistinguishing edge colorings of graphs[J]. SIAM Journal on Discrete Mathmaties, 2006,21 (1) : 237-250.
  • 6Akbafi S, Bidkhori H, Nosrati N. r-strong edgecolorings of graphs[J]. Diserete Math, 2006,306 (23) : 3 005 -3 010.
  • 7H. Hatami. △-300 is a bound on the adjacent vertex distinguishing edge chromatic number[J]. Journal of Combinatorial Theory, 2005,95 (B) : 246-256.
  • 8Li J W,Zhang Z F,Chen X E,et al,A note on adjacent strong edge coloring of[J]. ActaMath. Appl. Siniea (English Ser), 2006,22(2) : 273-276.
  • 9Bondy J A,Murty U S R. Graph theory with Applications[M]. NewYork: Macmillan, 1976.
  • 10Zhang Zhongfu, Liu Linzhong, Wang Jianfang. Adjacent strong edge coloring of graphs [J]. Applied Mathematics Letters, 2002(15) : 623-626.

共引文献207

同被引文献5

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部