期刊文献+

具有预防接种和隔离措施的SEIQR传染病模型 被引量:4

Global stability of SEIQR epidemiological model with vaccination and segregation
下载PDF
导出
摘要 研究了一类具有预防接种且带隔离项的非线性高维自治微分系统SEIQR流行病传播模型,得到疾病流行与否的阈值-基本再生数R0,证明了无病平衡点和地方病平衡点的存在性及全局稳定性.结果表明,对易感者进行接种和适当地增大隔离强度,将有利于疾病的控制与消除. A kind of non-linear high dimensional autonomous system,SEIQR epidemiology model containing vaccination and quarantine is studied.The threshold,basic reproductive number R0 which determines whether a disease is extinct or not,is obtained.The existence and global stabilities of the disease-free equilibrium and the endemic equilibrium is proved.The conclusions indicate that vaccination and a proper increasing of segregation intention benefit the controlling and elimination of the disease.
出处 《西安工程大学学报》 CAS 2011年第1期90-94,共5页 Journal of Xi’an Polytechnic University
基金 安徽省优秀青年人才基金项目(2009SQRZ196)
关键词 流行病 数学模型 基本再生数 平衡点 全局稳定性 轨道渐近稳定 epidemic mathematical model basic reproductive number equilibrium global stability orbital asymptotical stability
  • 相关文献

参考文献11

二级参考文献34

  • 1徐文雄,张太雷.具有隔离仓室流行病传播数学模型的全局稳定性[J].西安交通大学学报,2005,39(2):210-213. 被引量:15
  • 2王继延.一类非线性流行病数学模型的研究[J].华东师范大学学报(自然科学版),1994(1):11-16. 被引量:3
  • 3[3]Alberto d'Onofrio.On pulse vaccination strategy in the SIR epidemic model with vertical transmission[J].Applied Mathematics Letters,2005,(18):729-732
  • 4[4]Stone L,Shulgin B,Agur Z.Theoretical examination of the pulse vaccination policy in the SIR epidemic model[J].Mathl.Comput.Modelling,2000,31 (4/5):207-215
  • 5Li M Y, Muldowney J S. Global stability for the SEIR model in epidemiology[J]. Math Biosci, 1995, 125(2):155-164.
  • 6Zhang J, Ma Z E. Global dynamics of an SEIR epidemic model with saturating contact rate[J]. Math Biosci,2003,185 (1) : 15-32.
  • 7Fan M, Li M Y, Wang K. Global stability of an SEIS epidemic model with recruitment and a varying total population size[J]. Math Biosci, 2001,170 (2) : 199-208.
  • 8Thieme H R. Convergence results and a Poincare-Be-dixson trichotomy for asymptotically automous differential equations[J]. J Math Biol, 1991,30 (4) : 462-471.
  • 9Kermark M D, McKendrick A G. Contributions to the mathematical theory of epidemics[J]. Proc Roy Soc,A: Part Ⅰ, 1927, 115(5):700-721.
  • 10Horst R T, Carlos C C. How may infection age-dependent infectivity affect the dynamics of HW/AIDS?[J]. SIAM J Appl Math, 1993,53(5): 1 447-1 479.

共引文献51

同被引文献48

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部