摘要
研究了一类具有预防接种且带隔离项的非线性高维自治微分系统SEIQR流行病传播模型,得到疾病流行与否的阈值-基本再生数R0,证明了无病平衡点和地方病平衡点的存在性及全局稳定性.结果表明,对易感者进行接种和适当地增大隔离强度,将有利于疾病的控制与消除.
A kind of non-linear high dimensional autonomous system,SEIQR epidemiology model containing vaccination and quarantine is studied.The threshold,basic reproductive number R0 which determines whether a disease is extinct or not,is obtained.The existence and global stabilities of the disease-free equilibrium and the endemic equilibrium is proved.The conclusions indicate that vaccination and a proper increasing of segregation intention benefit the controlling and elimination of the disease.
出处
《西安工程大学学报》
CAS
2011年第1期90-94,共5页
Journal of Xi’an Polytechnic University
基金
安徽省优秀青年人才基金项目(2009SQRZ196)
关键词
流行病
数学模型
基本再生数
平衡点
全局稳定性
轨道渐近稳定
epidemic
mathematical model
basic reproductive number
equilibrium
global stability
orbital asymptotical stability