期刊文献+

关于一类模范畴的反变有限性(英文)

On contravariant finiteness of certain subcategories in the category of modules over an algebra
下载PDF
导出
摘要 设Λ是一个Artin代数,Λ-mod表示有限生成的左Λ-模范畴,所有投射维数有限的Λ-模做成的Λ-mod的满子范畴记为∞(Λ).设T∈Λ-mod,定义Λ-mod的满子范畴(T)={M∈Λ-mod存在一个正合列Tn→M→0,n∈Z}+∩∞(Λ).研究了子范畴(T)在Λ-mod中反变有限的问题,通过对Λ-模T的结构上的适当构造,得到了两种情形下(T)在Λ-mod中是反变有限的. Let Λ be an Artin algebra and Λ-mod the category of all left finitely generated Λ-modules.The subcategory consisting of all Λ-modules of finite projective dimension is denoted by P∞(Λ).Let T be a Λ-module,and G(T)={M∈Λ-mod then there exists an exact sequence Tn→M→0,n∈Z+}∩P∞(Λ)as a full subcategory of Λ-mod.This article discusses the problem on contravariant finiteness of G(T)in Λ-mod by constructing a Λ-module T.In two cases,we conclude G(T)is contravariantly finite in Λ-mod.
作者 万冰蓉
出处 《南昌工程学院学报》 CAS 2011年第1期6-9,共4页 Journal of Nanchang Institute of Technology
基金 Supported by the Youth Foundation of Nanchang Institute of Technology(No.2008KJ025)~~
关键词 有限投射维数 右逼近 反变有限子范畴 finite projective dimension right approximation contravariantly finite subcategory
  • 相关文献

参考文献8

  • 1万冰蓉.投射维数有限的模构成的子范畴的反变有限性[J].数学学报(中文版),2009,52(2):245-252. 被引量:3
  • 2Claus Michael Ringel.The category of modules with good filtrations over a quasi-hereditary algebra has almost split sequences[J]. Mathematische Zeitschrift . 1991 (1)
  • 3Auslander M,Smal S O.Almost split sequences in subcategories. Journal of Algebra . 1981
  • 4Auslander,M.,Smal?,S.Preprojective modules over Artin algebras. Journal of Algebra . 1980
  • 5Deng,B. M.On contravariant finiteness of subcategories of modules of projective dimension≤I, Proc. Journal of the American Mathematical Society . 1996
  • 6Happel D,Ringel CM.Tilted algebras. Transactions of the American Mathematical Society . 1982
  • 7Auslander M,Reiten I.Applications of contravariantly finite subcategories. Advances in Mathematics . 1991
  • 8Auslander M,Reiten I,Smal S O.Representation Theory of Artin Algebras. . 1995

二级参考文献14

  • 1Auslander M., Smalo S. O., Preprojective modules over artin algebras, J. Algebra, 1980, 66(1): 61-122.
  • 2Auslander M., Smalo S. O., Almost split sequences in subcategories, J. Algebra, 1981, 69(2): 426-454.
  • 3Happel D., Ringel C. M., Tilted algebras, Trans. Amer. Math. Soc., 1982, 274(2): 399-443.
  • 4Auslander M., Reiten I., Applications of contravariantly finite subcategaries, Adv. Math., 1991, 86(1): 111- 152.
  • 5Ringel C. M., The category of modules with good filtrations over a quasi-hereditary algebra has almost split sequences, Math. Zeit., 1991, 208: 209-225.
  • 6Gentle R., Todorov G., Extensions, kernels and cokernels of homologically finite subcategories, Can. Math. Soc. Conf. Proc., 1996, 18: 227-235.
  • 7Sikko S. A., Smalo S. O., Extensions of homologically finite subcategories, Arch. Math., 1993, 60(6): 517-526.
  • 8Auslander M., Reiten I., Homologically Finite Subcategories, in: Repesentation Theory of Algebras and Related Topics (Kyoto, 1990), Lond. Math. Soc. Lecture Notes series 168, Cambridge: Cambridge Univ. Press, 1992, 1-42.
  • 9Xi C. C., The relative Auslander-Reiten theory of modules, Preprint is available at http://math.bnu.edu.cn/- ccxi/Papers/Articles/rart .pdf/.
  • 10Auslander M., Smalo S. O., Relative homology and representation theory I: Relative homology and homologically finite subcategories, Comm. Algebra, 1993, 21(9): 2995-3031.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部