摘要
设Λ是一个Artin代数,Λ-mod表示有限生成的左Λ-模范畴,所有投射维数有限的Λ-模做成的Λ-mod的满子范畴记为∞(Λ).设T∈Λ-mod,定义Λ-mod的满子范畴(T)={M∈Λ-mod存在一个正合列Tn→M→0,n∈Z}+∩∞(Λ).研究了子范畴(T)在Λ-mod中反变有限的问题,通过对Λ-模T的结构上的适当构造,得到了两种情形下(T)在Λ-mod中是反变有限的.
Let Λ be an Artin algebra and Λ-mod the category of all left finitely generated Λ-modules.The subcategory consisting of all Λ-modules of finite projective dimension is denoted by P∞(Λ).Let T be a Λ-module,and G(T)={M∈Λ-mod then there exists an exact sequence Tn→M→0,n∈Z+}∩P∞(Λ)as a full subcategory of Λ-mod.This article discusses the problem on contravariant finiteness of G(T)in Λ-mod by constructing a Λ-module T.In two cases,we conclude G(T)is contravariantly finite in Λ-mod.
出处
《南昌工程学院学报》
CAS
2011年第1期6-9,共4页
Journal of Nanchang Institute of Technology
基金
Supported by the Youth Foundation of Nanchang Institute of Technology(No.2008KJ025)~~
关键词
有限投射维数
右逼近
反变有限子范畴
finite projective dimension
right approximation
contravariantly finite subcategory