期刊文献+

完全四部图的Seidel多项式及其谱(英文)

The Seidel polynomial and spectrum of the complete 4-partite graphs
下载PDF
导出
摘要 设G是一个简单无向图,A(G)是图G的(0,1)邻接矩阵.定义S(G)=J-I-2A(G)是图G的Seidel矩阵,SG(λ)=det(λI-S(G))是图G的Seidel特征多项式(本文中简记为Seidel多项式),其中I是单位矩阵,J是全1矩阵.如果SG(λ)的特征值都是整数,则图G被称为是S-整图.本文主要研究完全四部图G=Kn1,n2,n3,n4的Seidel多项式及SG(λ)的特征根,给出了完全四部图Kn1,n2,n3,n4是S-整图的充要条件. For a simple undirected graph G,let A(G) be the(0,1)-adjacency matrix of graph G,denote by the matrix S(G)=J-I-2A(G) the Seidel matrix,and SG(λ)=det(λI-S(G)) the Seidel characteristic polynomial of G(for simple the Seidel polynomial),where I is identity matrix,J is a square matrix all of whose entries are equal to 1.If all eigenvalues of SG(λ) are integral,then the graph G be called S-integral.The Seidel polynomial and eigenvalues of SG(λ) are investigated for the complete 4-partite graphs G=Kn1,n2,n3,n4.The necessary and sufficient condition for the complete 4-partite graphs Kn1,n2,n3,n4 to be S-integral is given.
作者 吕盛梅
出处 《西北师范大学学报(自然科学版)》 CAS 北大核心 2011年第2期22-25,共4页 Journal of Northwest Normal University(Natural Science)
基金 国家民委科学基金资助项目(10QH01)
关键词 Seidel多项式 S-整图 完全四部图 Seidel polynomial S-integral graph complete 4-partite graphs
  • 相关文献

参考文献12

  • 1BONDY J A, MURTY U 5; R. Graph Theory with Applications[M]. New York: The Macmillan Press LTD, 1976.
  • 2HARARY F, SCHWENK A J. Which graphs have integral spectral?[C]//BARI R, HARARY F. Graphs and CombilTatorics. Berlin: Springer, 1974 : 45 51.
  • 3BALINSKA K T, CVETKOVIC D, I.EPOVIC M, et al. There are exactly 150 connected integral graphs up to 10 vertices [J].Univ Beograd Publ Elektrotehn Fak(Ser Mat), 1999, 10:95 105.
  • 4BALINSKA K T, KUPCZYK M, SIMIC S K, et al. On generating all integral graphs on 11 vertices[R]. Computer Science Center Report. The Technical University of Poznan, 1999/2000: 469.
  • 5BALINSKA K T, KUPCZYK M, SIMIC S K, et al. On generating all integral graph on 12 vertices[R]. Computer Science Center Report. The Technical Unicersity of Poznan, 2001 : 482.
  • 6BALINSKA K T, CVETKOVIC D, RADOSAVLJEVIC Z, et al. A survey on integral graphs[J].Univ Beograd Publ Eleletrotehn Fak (Ser Mat), 2002, 13:42-65.
  • 7GRONE R, MERRIS R. The Laplacian spectrum of a graph[J]. SIAMJ Discrete Math, 1994, 7: 221- 229.
  • 8MERRIS R. Degree maximal graphs are Laplacian integral[J].Linear Algebra and Appl, 1994, 199: 381-389.
  • 9STEVANOVIC D. Research problems from the Aveiro Workshop on graph spectra [J]. Linear Algebra and Appl, 2007, 423: 172-181.
  • 10SIMIC S K, STANIC Z. Q-integral graphs with edge-degrees at most five[J]. Discrete Math, 2008, 308: 4625-4634.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部