期刊文献+

一种基于点—面匹配的3D-SLAM方法

3D-SLAM Based on Point-plane Matching
下载PDF
导出
摘要 提出一种基于点一面匹配的3维空间同步定位与3维地图创建(3D-SLAM)方法以解决3D-SLAM中的点云匹配问题.首先将3维空间中的6自由度(6DOF)匹配问题合理地简化成5DOF匹配问题,然后算法在激光雷达获取的每行数据中提取平面拐点,再通过区域生长的方式找到点云中的平面区域.通过计算平面的法向量,并比较两帧数据之间关联平面的法向量方向估计出旋转参数,然后算法利用一种改进的层次投影方法计算平多参数.在含有较高噪声的真实数据集上的实验证明该算法是有效的. A point-plane based point cloud matching algorithm is proposed to deal with point cloud matching problem in 3D simultaneous localization and mapping(3D-SLAM).The 6DOF matching problem in 3D space are logically simplified as a 5DOF problem firstly.And then,the algorithm extracts break point in each row of laser data and employs an area growth method to find planes in point cloud.Normal vectors of planes are computed.The rotation of two frames can be estimated by comparing normal vectors of two associated planes in two frames.An improved leveled map algorithm is used to compute the translation parameter.Experiments on real data set containing high noise validate the proposed 3D-SLAM method.
作者 袁夏 赵春霞
出处 《机器人》 EI CSCD 北大核心 2011年第2期215-221,共7页 Robot
基金 国家自然基金重大研究计划重点项目(90820306).
关键词 机器人 3维空间同步定位与地图创建 激光点云 平面提取 层次投影 robotics 3D-SLAM(simultaneous localization and mapping) laser point cloud plane extraction leveled map
  • 相关文献

参考文献12

  • 1Meyrowitz A L,Blidberg D R,Michelson R C.Autonomous vehicles[J].Proceedings of the IEEE,1996,84(8):1147-1164.
  • 2Bailey T.Mobile robot localisation and mapping in extensive outdoor environments[D].Sydney,Australian:Australian Centre for Field Robotics,Department of Aerospace,Mechanical and Mechatronic Engineering,University of Sydney,2002.
  • 3Castellanos J A,Monfiel J M M,Neira J,et al.Sensor influence in the performance of simultaneous mobile robot localization and map building[M]//Lecture Notes in Control and Information Sciences:Vol.250.Berlin,Germany:Spdnger,2000:287-296.
  • 4Dissanayake M W M G,Newman P,Durrant-Whyte H F,et al.An experimental and theoretical investigation into simultaneous iocalisation and map building[M]//Lecture Notes in Control and Information Sciences:vol.250.Berlin,Germany:Springer,2000:265-274.
  • 5罗荣华,洪炳镕.移动机器人同时定位与地图创建研究进展[J].机器人,2004,26(2):182-186. 被引量:35
  • 6Guivant J,Nebot E.Optimization of the simultaneous localization and map-building algorithm for real-time implementation[J].IEEE Transactions on Robotics and Automation,2001,17(3):242-257.
  • 7Holz D,Lorken C,Surmann H.Continuous 3D sensing for navigation and SLAM in cluttered and dynamic environments[C]//11th Intemational Conference on Information Fusion.Piscataway,N J,USA:IEEE.2008:1-7.
  • 8Artieda J,Sebastian J M,Campoy P,et al.Visual 3-D SLAM from UAVs[J].Journal of Intelligent and Robotic Systems:Theory and Applications、2009,55(4/5):299-321.
  • 9Tomono M.3D object mapping by integrating stereo SLAM and object segmentation using edge points[M]//Lecture Notes in Computer Science:vol.5875.Heidelberg,Germany:SpringerVerlag,2009:690-699.
  • 10Borrmann D,Elseberg J,Lingemann K,et al.Globally consistent 3D mapping with scan matching[J].Robotics and Autonomous Systems,2008,56(2):130-142.

二级参考文献25

  • 1[1]Smith R, Self M, Chesseman P. Estimating uncertain spatial relationships in robotics[A]. Proceedings of Conference on Uncertainty in Artificial Intelligence[C]. Amsterdam: North-Holland, 1988. 435-461.
  • 2[2]Csorba M. Simultaneous Localization and Map Building[D]. Oxford: University of Oxford, 1997.
  • 3[3]Dissanayake G, Newman P M, et al. A solution to the simultaneous localization and map building (SLAM) problem[J]. IEEE Transactions on Robotics and Automation, 2001, 17(3): 229-241.
  • 4[4]Leonard J J, Durrant-Whyte F. Simultaneous map building and localization for an autonomous mobile robot[A]. Proceedings of the IEEE International workshop on Intelligent Robots and Systems[C]. Osaka, Japan: 1991. 1442-1447.
  • 5[5]Leonard J J, Feder H J S. A computationally efficient method for large-scale concurrent mapping and localization[A]. Proceedings of the Ninth International Symposium on Robotics Research[C]. London: Springer-Verlag, 1999. 316-321.
  • 6[6]Guivant J, Nebot E, Baiker S. Autonomous navigation and map building using laser range sensors in outdoor applications[J]. Journal of Robotic Systems, 2000, 17 (10): 565-583.
  • 7[7]Wan E, Merwe R. The unscented Kalman-filter for nonlinear estimation[A]. Proceedings of the IEEE Symposium on Adaptive Systems for Signal Processing[C]. Alberta, Canada: 2000. 153-158.
  • 8[8]Castellanos J A, Tardos J D, Schmidt G. Building a global map of the environment of a robot: the importance of correlations[A]. Proceedings of the IEEE International Conference on Robotics and Automation[C]. 1997.1053-1059.
  • 9[9]Leonard J, Feder H J S. Decoupled stochastic mapping[J]. IEEE Journal of Oceanic Engineer, 2001,26(4): 561-571.
  • 10[10]Williams S B. Efficient Solutions to Autonomous Mapping and Navigation Problems[D]. Sydney: University of Sydney, 2001.

共引文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部