期刊文献+

海龟柔性前肢仿生推进研究 被引量:9

Bionic Research on Turtle's Flexible Forelimb Propulsion
下载PDF
导出
摘要 为探讨水翼法推进方式,进行了海龟柔性前肢仿生技术研究.基于水翼法运动解析,研究了海龟柔性水翼的弦向形变特征、反卡门涡街脱泻及斯特劳哈尔数等,推算出水翼尾涡脱泻的斯特劳哈尔数位于0.2~0.45之间,雷诺数位于3×10~2~3×10~4之间;根据海龟水翼粘弹本构特性,研制了半骼式仿生柔性水翼,并对其进行柔性形变和组织模态分析.通过水下仿生实验平台进行了半骼式柔性水翼和全骼式刚性水翼推进的直航、转艏性能对比实验,实验结果显示,虽然柔性水翼只有在较高ω_1值拍动时的推进效率才高于刚性水翼,但其速度增长率却始终高于刚性水翼;并且随着ω_1值的增长,柔性水翼对于样机速度减振方面的作用一直存在且越来越明显.实验研究结果为柔性水翼操纵与控制研究提供了技术基础. In order to investigate the hydrofoil propulsion method,the bionic technology of the turtle's flexible forelimbs is studied.Based on the kinematical analysis of turtle hydrofoil,the chordwise deformation characteristics,the reverse Karman vortex street shedding,and the Strouhal number of flexible hydrofoil are studied,and then it is calculated that the Strouhal number is between 0.2 and 0.45,the Reynolds number is from 3×10~2 to 3×10~4.According to the viscoelastic constitutive property of turtle hydrofoil,the half-iliac bionic flexible hydrofoil is developed,and its flexible deformation as well as tissue mode are analyzed.By use of the underwater bionic experimental sample,the direct navigation and yawing performance contrast tests of bionic sample with the half-iliac flexible hydrofoil and whole-iliac rigid hydrofoil are conducted respectively. The experiments' results show that,however the propulsion efficiency of flexible hydrofoil is higher than the rigid one only moving at the high value ofω_1,the sample's acceleration when propelled by the flexible hydrofoil is higher than the rigid one all the time.And along with the increasing ofω_1,the function of flexible hydrofoil to reduce the velocity vibration of bionic sample,always exists and becomes more and more obvious.These experiments' results provide significant technical foundation for the control and manipulation study of flexible hydrofoil in the future.
出处 《机器人》 EI CSCD 北大核心 2011年第2期229-236,共8页 Robot
基金 黑龙江省自然科学基金资助项目(E200831).
关键词 水翼法推进 柔性形变 模态分析 hydrofoil propulsion compliant deformation modal analysis
  • 相关文献

参考文献11

  • 1Xu J A,Liu X B,Chu D H,et al.Analysis and experiment research of the turtle forelimb's hydrofoil propulsion method[C]//IEEE International Confercnce on Robotics and Biomimetics.Piscataway,NJ,USA:IEEE,2009:386-391.
  • 2Chu D H,Liu X B,Zhang M J.Research on turtle hydrofoil motion principle and bionics[C]//IEEE International Conference on Automation and Logisties.Piscataway,NJ,USA:IEEE,2008:2373-2378.
  • 3余永亮,童秉纲,马晖扬.昆虫拍翼方式的非定常流动物理再探讨[J].力学学报,2005,37(3):257-265. 被引量:11
  • 4鲍麟,胡劲松,余永亮,程鹏,续伯钦,童秉纲.VISCOELASTIC CONSTITUTIVE MODEL RELATED TO DEFORMATION OF INSECT WING UNDER LOADING IN FLAPPING MOTION[J].Applied Mathematics and Mechanics(English Edition),2006,27(6):741-748. 被引量:1
  • 5Jones K D,PIatzer M E Numerical computation of flapping-wing propulsion and power extraction[C]//35th AIAA Aerospace Sciences Meeting.Reston,VA,USA:AIAA,1997.
  • 6Heathcote S,Martin D,Gursul I.Flexible flapping wing propulsionat zero freestream velocity[C]//33rd AIAA Fluid DynamicsConference and Exhibit.Reston,VA,USA:AIAA,2003.
  • 7Alexander R M.Principles of animal locomotion[M].New Jersey,USA:Princeton University Press,2002.
  • 8Triantafyllou G S,Triantafyllou M S,Grosenbaugh M A.Optimal thrust development in oscillating foils with application to fish propulsion[J].Journal of FluidS and Structures,1993,7(2):205-224.
  • 9Taylor G K,Nudds R L,Thomas A L R.Flying and swimming animals cruise at a Strouhal number tuned for high power efficiency[J].Nature,2003,425(6959):707-711.
  • 10Yongliang Yu,Binggang Tong.A flow control mechanism in wing flapping with stroke asymmetry during insect forward flight[J].Acta Mechanica Sinica,2005,21(3):218-227. 被引量:18

二级参考文献1

共引文献23

同被引文献75

  • 1骆东玲,陆培东,喻国华.东部平原城市水污染现状及河网结构对水污染影响[J].环境工程,2011,29(S1):59-62. 被引量:17
  • 2宗光华,贾明,毕树生,徐一村.扑翼式微型飞行器的升力测量与分析[J].机械工程学报,2005,41(8):120-124. 被引量:17
  • 3MENOZZI A,LEINHOS H. Synthesis and coordination of the motion of multiple flapping foils for control of a biorobotic AUV [ C ]// OCEANS 2006 - Asia Pacific, Singapore ,2007 : No. 4393817.
  • 4ZHANG Ming-jun,LIU Xiao-bai, XU Jian-an, et al. Bionic hydrofoil propulsion experiments research [ C ]// 2010 IEEE International Conference on Mechatronics and Automation, Xi'an, China,2010,231 - 236.
  • 5SUN M, TANG J. Unsteady aerodynamic force generation by a model fruit fly wing in flapping motion[ J]. Journal of Experimental Biology ,2002,205 ( 1 ) :55 - 70.
  • 6LOW K H,CHUNLIN Z, ONG T W,et al. Modular design and initial gait study of an amphibian robotic turtle [ C ]// Proceedings of the 2007 IEEE International Conference on Robotics and Biomimetics, Sanya, C hina ,2007,535 - 540.
  • 7ANSARI S A, ZBIKOWSKI R, KNOWLES K. Aerodynamic modeling of insect-like flapping flight for micro air vehicles [ J ]. Progress in Aerospace Science ,2006,42 (2) : 129 - 172.
  • 8HSU S,MAILEY C, EADE E, et al. Autonomous control of a horizontally configured undulatory flap propelled vehicle [ C ]// Proceedings-IEEE International Conference on Robotics and Automation. Taipei, Taiwan, 2003 ( 2 ) : 2194 - 2199.
  • 9Zhang M J, Liu X B, Chu D H, et al. The principle of turtle motion and bio-mechanism of its four limbs research[C]//Pacific- Asia Workshop on Computational Intelligence and Industrial Application. Piscataway, NJ, USA: IEEE, 2008: 573-578.
  • 10Taylor G K, Nudds R L, Thomas A L R. Flying and swimming animals cruise at a Strouhal number tuned for high power efficiency[J]. Nature, 2003, 425(6959): 707-711.

引证文献9

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部