期刊文献+

基于特殊节点的重心有理插值方法

Barycentric rational interpolation on special points
下载PDF
导出
摘要 重心有理插值精度高,且无极点,采用不同的权得到不同的重心有理插值。本文使用切比雪夫点作为插值节点,选取最优插值权来构造重心有理插值。新方法所得插值具有非常高的精度,通过数值实例表明了新方法的有效性。 Barycentric rational interpolation is accurate and have no poles.For different weight,barycentric rational interpolation has different accuracy.Based on the best weights and the Chebyshev points,the accurate barycentric rational interpolation is studied.Two numerical examples are given to show the effectiveness of the new method.
出处 《安徽建筑工业学院学报(自然科学版)》 2011年第1期64-66,共3页 Journal of Anhui Institute of Architecture(Natural Science)
基金 国家自然科学基金(60973050 30570431 60873144) 安徽省教育厅自然科学基金项目(KJ2009A50 KJ2007B173) 安徽省优秀人才基金 教育部新世纪优秀人才支持计划(NCET-06-0555) 国家863高技术研究发展计划项目基金(2006AA01Z104)资助
关键词 重心有理插值 插值权 切比雪夫点 barycentric rational interpolation weights Chebyshev points
  • 相关文献

参考文献9

  • 1Baltensperger R, Berrut J P, Noel B. Exponential con- vergence of a linear rational interpolant between trans- formed Chebyshev points[J]. Mathematics of Compu- tation, 1999,68(227) : 1109- 1120.
  • 2Berrut J P. Barycentric formulate for some optimal ra- tional approximate involving Blaschke products[J].Computing, 1999,44(1) : 69-82.
  • 3Berrut J P. The barycentric weights of rational ifiter- polation with prescribed poles [J]. J Comput Appl Math, 1997,86(1) : 45-52.
  • 4Berrut J P, Trefethen L N. Barycentric lagrange inter- polation[J]. SIAM Review. 2004,46(3) : 501 - 517.
  • 5Nicholas J H. The numerical stability of barycentrie la- grange interpolation[J]. IMA Journal of Numerical A- nalysis, 2004,24(4) : 547556.
  • 6Schneider C, Werner W. Some new aspects of rational interpolation [J]. Math Comp, 1986, 47 (175) : 285 -299.
  • 7Berrut J P, Baltensperger R, Mittelmarm H D. Recent developments in barycentric rational interpolation, trends and applications in constructive approximation l-A]. In De Bruin M G,D Mache H, Szabados J, eds. International Series of Numerical Mathematics [C]. Birkauser.. Verlag Basel, 2005,151 : 27-51.
  • 8Yu--wu Zhang. Bivariate Blending Rational Interpola- tion with High-- accuracy[J]. Journal of Anhui Uni- versity of Technology, 2010,27(2).
  • 9Battles Z, Trefethen L N. An extention of MATLAB to continuous functions and operations[J].SIAM Jour- nal of Science Computation, 2004. 25(5):1743-1770.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部