期刊文献+

基于区域空间与词汇加权的图像自动标注

Image Automatic Annotation Based on Weighted District Space and Vocabulary
下载PDF
导出
摘要 图像自动标注是图像检索与图像理解中重要而又极具挑战性的问题.针对现有模型忽略了图像不同区域对图像整体贡献程度的差异性,提出了基于区域空间加权的标注方法,改善了图像的区域特征生成概率估计.此外,针对现有模型未考虑词汇本身重要性以及词汇分布对标注性能的影响,提出了基于词汇固定权值的标注方法、基于平滑词汇频率的标注方法以及基于词汇TF-IDF加权的标注方法,对词汇的生成概率估计部分进行了改进.综合以上区域空间改进与词汇改进,提出了WDVRM图像标注模型.通过在Corel数据库进行的实验,验证了WDVRM模型的有效性. Image automatic annotation is a significant and challenging problem in image retrieval and image under-standing.Existing models ignored that different regions of images had different contributions to the overall images.So an annotation method based on weighted district space to improve the generation probability estimation of regional features of the images was proposed.On the other hand,existing model did not take into account the importance of vocabulary as well as vocabulary distribution which impacted the annotation performance.Three methods to overcome the above problems were proposed,including: fixed vocabulary weight method,smooth vocabulary frequency method and weighted vocabulary’s TF-IDF method.These methods can improve the generation probability estimation of vo-cabulary.By integrating all above improved methods of weighted district space and weighted vocabulary,WDVRM image annotation model were proposed.Experiments conducted on Corel datasets have verified that the WDVRM model is quite effective.
作者 柯逍 李绍滋
出处 《天津大学学报》 EI CAS CSCD 北大核心 2011年第3期248-256,共9页 Journal of Tianjin University(Science and Technology)
基金 国家自然科学基金资助项目(60873179 60803078) 高等学校博士学科点专项科研基金资助项目(20090121110032) 深圳市科技计划基础研究基金资助项目(JC200903180630A)
关键词 图像自动标注 区域加权 词汇加权 相关模型 image automatic annotation weighted district weighted vocabulary relevance model
  • 相关文献

参考文献18

  • 1Eakins J P. Automatic image content retrieval-are we getting anywhere[C]// Proceedings of Third International Conference on Electronic Library and Visual Information Research. Cambridge,UK, 1996 : 123-135.
  • 2Duygulu P,Barnard K,Freitas J ,et al. Object recognition as machine translation :Learning a lexicon for a fixed im age vocabulary[C]// Proceedings' of the 7th European Conference on Computer Vision. Copenhagen,Denmark, 2002:97-112.
  • 3Shi J,Malik J. Normalized cuts and image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000,22 (8) : 888-905.
  • 4Monay F ,Gatica-Perez D. On image auto-annotation with latent space models [ C] // Proceedings of the ACM Inter- national Conference on Multimedia. Berkeley ,USA, 2003:275-278.
  • 5Jeon J, Lavrenko V ,Manmatha R. Automatic image annotation and retrieval using cross-media relevance models[C]// Proceedings of the 26th Annual International ACMSIGIR. Toronto,Canada,2003 : 119-126.
  • 6Lavrenko V,Manmatha R,Jeon J. A model for learning the semantics of pictures [C] // Proceedings of Advance in Neutral Information Processing. Vancouver/Whistler, Canada,2003.
  • 7Feng S L,Manmatha R,Lavrenko V. Multiple Bernoulli relevance models for image and video annotation [C]// Proceedings of the IEEE Computer Society Conference on Computer l~sion and Pattern Recognition. Washington, USA,2004:1002-1009.
  • 8Zhao Yufeng,Zhao Yao,Zhu Zhenfeng. TSVM-HMM: Transductive SVM based hidden Markov model for automatic image annotation [J]. Expert Systems with Applications,2009,36 (6) : 9813-9818.
  • 9Gustavo C,Antoni B C,Pedro J M, et al. Supervised learning of semantic classes for image annotation and retrieval[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007,29 (3) :394-410.
  • 10Wang Yong,Mei Tao,Gong Shaogang,et al. Combining global ,regional and contextual features for automatic image annotation [J]. Pattern Recognition, 2009,42 : 259- 266.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部