期刊文献+

全基因组DNA甲基化芯片数据批次效应的评价 被引量:1

Evaluation of Batch Effects of Genome Wide Microarrays from the TCGA Database
下载PDF
导出
摘要 DNA甲基化芯片已广泛应用于癌症研究。但是有研究表明批次效应对基于高通量数据的研究有很大影响。癌症基因组计划(TCGA)数据库包含大量的不同批次的高通量甲基化数据。通过分析TCGA中7种癌症的数据,发现批次效应在各种类型的癌症数据中都广泛存在,可能会导致错误的生物学分析结论。最后,建议用一个简单的方法来避免批次效应。 Genome-wide methylation microarrays were widely used in cancer research. However, recent research suggested batch effects in high throughput data were often overlooked and lead to incorrect conclusions. The Cancer Genome Atlas (TCGA) database contained many methylation array datasets which were preformed on different batches. Here, we analyzed datasets from 7 cancer types in TCGA database. We found batch effects were widespread for each cancer. Then we showed ignoring the batch effects would lead to incorrect biological conclusions. At last, we suggested a simple choice to avoid batch effects.
出处 《数理医药学杂志》 2011年第2期142-144,共3页 Journal of Mathematical Medicine
基金 国家自然科学基金项目(编号:30770558 30970668 81071646) 黑龙江省杰出青年基金(编号:JC200808)资助
关键词 TCGA 批次效应 甲基化芯片 TCGA batch effects methylation microarrays
  • 相关文献

参考文献13

  • 1Esteller, M. Epigenetics in cancer. N Engl J Med, 2008,358(11) : 1148-1159.
  • 2Kanduri, M. , N. Cahill, H. Goransson, C, et al. Differential genome-wide array-based methylation profiles in prognostic subsets of chronic lymphocytic leukemia. Blood, 2010, 115(2): 296-305.
  • 3Melnikov, A. , D. Scholtens, A. Godwin, and V. Levenson. Differential methylation profile of ovarian cancer in tissues and plasma. J Mol Diagn, 2009,11(1): 60-65.
  • 4Lugthart, S., M.E. Figueroa, E. Bindels, L, et al. Aberrant DNA hypermethylation signature in acute myeloid leukemia directed by EVIl. Blood, 2010.
  • 5Bediaga, N. G. , A. Acha-Sagredo, I, et al. DNA methylation epigenotypes in breast cancer molecular subtypes. Breast Cancer Res, 2010,12(5): R77.
  • 6Shaknovich, R. , H. Geng, N.A. Johnson, L, et al. DNA meth- ylation signatures define moleeular subtypes of diffuse large B-cell lymphoma. Blood, 2010, 116(20): 81--89.
  • 7Taylor, K. H. , K. E. Pena-Hemandez, J.W. et al. Large-scale CpG methylation analysis identifies novel candidate genes and reveals methylation hotspots in acute lymphoblastic leukemia. Cancer Res, 2007,67(6) : 2617-2625.
  • 8De Pock, M. , D. de Seny, IV[ A. Meuwis, J. P, et al. Challenges for biomarker discovery in body fluids using SELDI-TOF-MS. J Biomed Biotechnol, 2010,2010: 906082.
  • 9Hogan, J. M. , R. Higdon, and E: Kolker. Experimental standards for high-throughput proteomics. OMICS, 2006,10(2) : 152- 157.
  • 10Poon, T.C. Opportunities and limitations of SELDI-TOF-MS in biomedical research: practical advices. Expert Rev Proteomics, 2007, 4(1): 51-65.

同被引文献17

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部