期刊文献+

一类具有函数垂直比例因子的分形插值曲面 被引量:1

A class of fractal interpolation surfaces with function vertical scaling factors
下载PDF
导出
摘要 构造了一类具有函数垂直比例因子的迭代函数系,证明了它有唯一的吸引子.给定一组插值结点集,证明了吸引子是经过该插值结点集的分形插值曲面,即吸引子是某二元连续函数的图像.这类迭代函数系与传统迭代函数系相比,在生成分形插值曲面时更加方便,条件也更简单. A class of iterated function system with function vertical scaling factors was constructed,and the only attractor generated by IFS(iterated function system) was proved.According to the given interpolation nodes,it was proved that the attractor was a fractal interpolation surface of throngh-inter-polation nodes,and it was the graph of fractal interpolation function.Comparison with traditional IFS,the IFS is convenient and simple in generation of fractal interpolation surface.
作者 彭涛 冯志刚
机构地区 江苏大学理学院
出处 《江苏科技大学学报(自然科学版)》 CAS 北大核心 2010年第6期615-618,共4页 Journal of Jiangsu University of Science and Technology:Natural Science Edition
基金 国家自然科学基金资助项目(10771088)
关键词 迭代函数系 吸引子 分形插值曲面 iterated function system attractor fractal interpolation surface
  • 相关文献

参考文献14

  • 1Barnsley M F.Fractal functions and interpolation[J].Constr Approx,1986,2:303-329.
  • 2Barnsley M F.Fractal Everywhere[M].New York:Academic Press,1988:205-238.
  • 3Massopust P R.Fractal surface[J].Journal of Mathematical Analysis and Applications Aplly,1990,151:275-290.
  • 4Geronimo J S,Hardin D.Fractal interpolation surface and a related 2-D multiresolution anaiysis[J].Journal of Mathematical Analysis and Applications,1993,176:561-586.
  • 5Xie H,Sun H.The study on bivariate fractal interpolation function and creation of fractal interpolation surface[J].Fractal,1997,5(4):625-634.
  • 6Xie H,Sun H,Ju Y,et al.Study on generation of rock fracture surface by using fractal interpolation[J].International Journal of Solids and Structures,2001,38(32):5765-5787.
  • 7Dalla L.Bivariate fractal interpolation functions on grids[J].Fractals,2002,10(1):53-58.
  • 8Malysz R.The Minkowski dimension of the bivariate fractal interpolation surfaces[J].Chaos Solitons and Fractals,2006,27(5):1147-1156.
  • 9Bouboulis P,Dalla L,Drakopoulos V.Construction of recurrent bivariate fractal interpolation surfaces and computation of their box-counting dimension[J].Journal of Approximation Theory,2006,141(2):99-117.
  • 10李红达,叶正麟,王小平.分形插值曲面[J].计算机辅助设计与图形学学报,2002,14(4):316-319. 被引量:24

二级参考文献26

  • 1沙震.HOLDER PROPERTY OF FRACTAL INTERPOLATION FUNCTION[J].Analysis in Theory and Applications,1992,8(4):45-57. 被引量:3
  • 2冯志刚,王磊.分形插值函数的δ-变差的性质[J].江苏大学学报(自然科学版),2005,26(1):49-52. 被引量:15
  • 3李玲,冯志刚,许荣飞.三维空间中函数图像的计盒维数[J].安徽工业大学学报(自然科学版),2007,24(1):113-116. 被引量:4
  • 4王宏勇.一类具有双参数的迭代函数系及其吸引子[J].厦门大学学报(自然科学版),2007,46(2):157-160. 被引量:11
  • 5Robert Malysz. The Minkowski dimension of the Bivartiate Fractal interpolation surfaces[J]. Chaos, Solition and Fractal, 2006, 27:1147-1156.
  • 6Zhigang Feng. Variation and Minkowski dimension of fractal interpolation surface [J ]. Journal of Mathematical Analysis and Application, 2008,3.
  • 7Dubuc B, Tricot C. Variation d'une fonction et dimension de son graph[J]. C R Acad Sci Paris Ser I Math, 1988, 306:531 - 533.
  • 8[1]LIN T,CHUA L O.On chaos of digital filters in the real world[J].IEEE Trans Circ and Syst,1991,38(5):557-558.
  • 9[2]WANG J,DING X L,HU B,et al.Characteristics of a piecewise smooth area-preserving map[J].Phys Rev E,2001,64:026202.
  • 10[3]WANG X M,WANG Y M,HE D R,et al.A quasi-crisis in a quasi-issipative system[J].Eur Phys J D,2002 19:119-124.

共引文献42

同被引文献9

  • 1戴俊.一例分段连续系统的分形特征[J].江苏科技大学学报(自然科学版),2006,20(5):37-40. 被引量:2
  • 2BARNSLEY M F.Fractal functions and interpolation[J].Constr Approx,1986(2):303-329.
  • 3BARNSLEY M F.Fractal everywhere[M].New York: Academic Press,1988:17-18.
  • 4GERONIMO J S,HARDIN D.Fractal interpolation surfaces and a related 2D multiresolution analysis [J].Journal of Mathematical Analysis and Application,1993,176 (2) :561-586.
  • 5DALLA L.Bivariate fractal interpolation functions on grids[J].Fractals,2002,10 (1):53-58.
  • 6ROBERT M.The minkowski dimension of the bivartiate fractal interpolation surfaces [J].Chaos Solition and Fractal, 2006(27):1147- 1156.
  • 7BOUBOULIS P,DALLA L.Fractal interpolation surfaces derived from fractal interpolation functions[J].Math Anal Appl,2007 (336):919-936.
  • 8江镅,冯志刚.一类多参数分形插值曲面[J].成都信息工程学院学报,2009,24(6):616-618. 被引量:9
  • 9孙秀清.基于分形插值函数生成的分形插值曲面的中心变差[J].镇江高专学报,2014,27(3):44-47. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部