Some New Results for Perturbation of g-frames
被引量:2
Some New Results for Perturbation of g-frames
摘要
Some new results for perturbation of g-frames are established,and it is shown that the existing partial results are the corollaries of our results.
参考文献20
-
1DUFFIN R J,SCHAEFFER A C.A class of nonharmonic Fourier series[J].Trans Amer Math Soc,1952,72:341-366.
-
2DAUBECHIES I,GROSSMAN A,MEYER Y.Painless nonorthogonal expansions[J].J Math Phys,1986,27:1271-1283.
-
3CHRISTENSEN O.An Introduction to Frames and Riesz Bases[M].Boston:Birkh(a)user,2003.
-
4FEICHTINGER H G,GR(O)CHENIG K.Theory and Practice of Irregular Sampling[C].New York:CRC Press,1994.
-
5CAND(E)S E J,DONOHO D L.New tight frames of curvelets and optimal representations of objects with piecewise C2 singularties[J].Comm Pure Appl Math,2004,56:216-266.
-
6HEATH R W,PAULRAJ A J.Linear dispersion codes for MIMO systems based on frame theory[J].IEEE Trans Signal Process,2002,50:2429-2441.
-
7LI Shi-dong,OGAWA H.Pseudo-frames for subspaces with applications[J].J Fourier Anal Appl,2004,10:409-431.
-
8CHRISTENSEN O,ELDAR Y C.Oblique dual frames and shift-invariant spaces[J].Appl Comp Harm Anal,2004,17:48-68.
-
9ALDROUBI A,CABRELLI C,MOLTER U.Wavelets on irregular grids with arbitrary dilation matrices and frame atomics for L2(Rd)[J].Appl Comp Harm Anal,2004,17:119-140.
-
10SUN Wen-chang.G-frames and g-Reisz bases[J].J Math Anal Appl,2006,322(1):437-452.
二级参考文献46
-
1Duffin, R. J., Schaeffer, A. C.: A class of nonharmonic Fourier series. Trans. Amer. Math. Soc., 72, 341-366 (1952)
-
2Casazza, P. G.: The art of frame theory. Taiwan Residents J. of Math., 4(2), 129-201 (2000)
-
3Christensen, O.: An Introduction to Prames and Riesz Bases, Birkhauser, Boston, 2003
-
4Christensen, O.: Frames, Riesz bases, and discrete Gabor/wavelet expansions. Bull. Amer. Math. Soc., 38(3), 273-291 (2001)
-
5Yang, D. Y., Zhou, X. W., Yuan, Z. Z.: Frame wavelets with compact supports for L2(Rn). Acta Mathernatica Sinica, English Series, 23(2), 349-356 (2007)
-
6Li, Y. Z.: A class of bidimensional FMRA wavelet frames. Acta Mathematica Sinica, English Series, 22(4), 1051-1062 (2006)
-
7Zhu, Y. C.: q-Besselian frames in Banach spaces. Acta Mathematica Sinica, English Series, 23(9), 1707- 1718 (2007)
-
8Li, C. Y., Cao, H. X.: Xd frames and Reisz bases for a Banach space. Acta Mathematica Sinica, Chinese Series, 49(6), 1361-1366 (2006)
-
9Sun, W.: G-frames and g-Riesz bases. J. Math. Anal. Appl., 322(1), 437-452 (2006)
-
10Sun, W.: Stability of g-frames. J. Math. Anal. Appl., 326(2), 858-868 (2007)
共引文献46
-
1高文君,何晓娜.广义Riesz基的稳定性[J].河南师范大学学报(自然科学版),2011,39(2):17-19.
-
2黄喜娇,朱玉灿.Hilbert空间中的g-Riesz-Fischer序列[J].福州大学学报(自然科学版),2008,36(6):779-783. 被引量:2
-
3王亚玲,朱玉灿.Hilbert空间中的g-Riesz分解[J].福州大学学报(自然科学版),2010,38(5):617-622.
-
4丁明玲,朱玉灿.Hilbert空间中的拟g-Riesz基[J].福州大学学报(自然科学版),2010,38(5):623-628. 被引量:1
-
5黄新丽,舒志彪.用算子矩阵构造g-框架[J].福州大学学报(自然科学版),2010,38(5):629-633. 被引量:1
-
6余白云,舒志彪.对偶g-框架的刻画[J].科技资讯,2010,8(33):210-211.
-
7丁明玲.Hilbert空间中拟g-Riesz基与拟Riesz基、g-Besselian框架的关系[J].福建农林大学学报(自然科学版),2010,39(6):664-667.
-
8郭训香.小波框架的某些判定准则[J].数学学报(中文版),2011,54(1):159-168.
-
9李建振,朱玉灿.Hilbert空间中的g-Riesz框架[J].中国科学:数学,2011,41(1):53-68. 被引量:14
-
10高文君,朱媛.广义框架的Aldroubi判定准则[J].河南大学学报(自然科学版),2011,41(2):115-117.
-
1Amir KHOSRAVI,Morteza MIRZAEE AZANDARYANI.APPROXIMATE DUALITY OF g-FRAMES IN HILBERT SPACES[J].Acta Mathematica Scientia,2014,34(3):639-652. 被引量:8
-
2Yan Jin WANG Yu Can ZHU~(1))Department of Mathematics,Fuzhou University,Fuzhou 350002,P. R. China.G-Frames and g-Frame Sequences in Hilbert Spaces[J].Acta Mathematica Sinica,English Series,2009,25(12):2093-2106. 被引量:14
-
3姚喜妍.Perturbations of G-Frames in Hilbert Spaces[J].Journal of Mathematical Research and Exposition,2008,28(4):1037-1041. 被引量:3
-
4A.ABDOLLAHI,E.RAHIMI.G-Frame Representation and Invertibility of G-Bessel Multipliers[J].Journal of Mathematical Research with Applications,2013,33(4):392-402.
-
5Laura GAVRUTA,Pasc GAVRUTA.SOME PROPERTIES OF OPERATOR-VALUED FRAMES[J].Acta Mathematica Scientia,2016,36(2):469-476. 被引量:1
-
6Bin Tao CAO.Asymmetric and Moving-Frame Approaches to MHD Equations[J].Acta Mathematica Sinica,English Series,2012,28(1):1-36.
-
7Yu Can ZHU.Characterizations of g-Frames and g-Riesz Bases in Hilbert Spaces[J].Acta Mathematica Sinica,English Series,2008,24(10):1727-1736. 被引量:38
-
8WU PanYu,CHEN ZengJing.Invariance principles for the law of the iterated logarithm under G-framework[J].Science China Mathematics,2015,58(6):1251-1264. 被引量:8
-
9臧丽丽,孙文昌.INVERTIBLE SEQUENCES OF BOUNDED LINEAR OPERATORS[J].Acta Mathematica Scientia,2011,31(5):1939-1944. 被引量:1
-
10本刊英文版Vol.28(2012),No.1论文摘要(英文)[J].数学学报(中文版),2012,55(2).