期刊文献+

Some New Results for Perturbation of g-frames 被引量:2

Some New Results for Perturbation of g-frames
下载PDF
导出
摘要 Some new results for perturbation of g-frames are established,and it is shown that the existing partial results are the corollaries of our results.
作者 GAO Wen-jun
出处 《Chinese Quarterly Journal of Mathematics》 CSCD 2010年第4期543-549,共7页 数学季刊(英文版)
关键词 G-FRAME g-Bessel sequence PERTURBATION g 框架;g-Bessel 顺序;不安;
  • 相关文献

参考文献20

  • 1DUFFIN R J,SCHAEFFER A C.A class of nonharmonic Fourier series[J].Trans Amer Math Soc,1952,72:341-366.
  • 2DAUBECHIES I,GROSSMAN A,MEYER Y.Painless nonorthogonal expansions[J].J Math Phys,1986,27:1271-1283.
  • 3CHRISTENSEN O.An Introduction to Frames and Riesz Bases[M].Boston:Birkh(a)user,2003.
  • 4FEICHTINGER H G,GR(O)CHENIG K.Theory and Practice of Irregular Sampling[C].New York:CRC Press,1994.
  • 5CAND(E)S E J,DONOHO D L.New tight frames of curvelets and optimal representations of objects with piecewise C2 singularties[J].Comm Pure Appl Math,2004,56:216-266.
  • 6HEATH R W,PAULRAJ A J.Linear dispersion codes for MIMO systems based on frame theory[J].IEEE Trans Signal Process,2002,50:2429-2441.
  • 7LI Shi-dong,OGAWA H.Pseudo-frames for subspaces with applications[J].J Fourier Anal Appl,2004,10:409-431.
  • 8CHRISTENSEN O,ELDAR Y C.Oblique dual frames and shift-invariant spaces[J].Appl Comp Harm Anal,2004,17:48-68.
  • 9ALDROUBI A,CABRELLI C,MOLTER U.Wavelets on irregular grids with arbitrary dilation matrices and frame atomics for L2(Rd)[J].Appl Comp Harm Anal,2004,17:119-140.
  • 10SUN Wen-chang.G-frames and g-Reisz bases[J].J Math Anal Appl,2006,322(1):437-452.

二级参考文献46

  • 1Duffin, R. J., Schaeffer, A. C.: A class of nonharmonic Fourier series. Trans. Amer. Math. Soc., 72, 341-366 (1952)
  • 2Casazza, P. G.: The art of frame theory. Taiwan Residents J. of Math., 4(2), 129-201 (2000)
  • 3Christensen, O.: An Introduction to Prames and Riesz Bases, Birkhauser, Boston, 2003
  • 4Christensen, O.: Frames, Riesz bases, and discrete Gabor/wavelet expansions. Bull. Amer. Math. Soc., 38(3), 273-291 (2001)
  • 5Yang, D. Y., Zhou, X. W., Yuan, Z. Z.: Frame wavelets with compact supports for L2(Rn). Acta Mathernatica Sinica, English Series, 23(2), 349-356 (2007)
  • 6Li, Y. Z.: A class of bidimensional FMRA wavelet frames. Acta Mathematica Sinica, English Series, 22(4), 1051-1062 (2006)
  • 7Zhu, Y. C.: q-Besselian frames in Banach spaces. Acta Mathematica Sinica, English Series, 23(9), 1707- 1718 (2007)
  • 8Li, C. Y., Cao, H. X.: Xd frames and Reisz bases for a Banach space. Acta Mathematica Sinica, Chinese Series, 49(6), 1361-1366 (2006)
  • 9Sun, W.: G-frames and g-Riesz bases. J. Math. Anal. Appl., 322(1), 437-452 (2006)
  • 10Sun, W.: Stability of g-frames. J. Math. Anal. Appl., 326(2), 858-868 (2007)

共引文献46

同被引文献1

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部