摘要
设G=(V,E)是一个图,一个函数f:E→{-1,+1}如果∑e′∈N(e)f(e′)≤0对于至少k条边e∈E成立,则称f为图G的一个反符号边全k控制函数。一个图G的反符号边全k控制数定义为γkst(G)=max{∑e∈Ef(e)|f为图G的反符边全k控制函数}。本文主要给出了连通图G的反符号边全k控制数γkst(G)的若干上限。
Let G=(V,E) be a graph,a function f:E→{-1,+1} is said to be a reverse signed edge total k-dominating function(RSETk-DF) of G if ∑e′∈N(e)f(e′)≤0 holds for at least k edges e∈E(G),the reverse signed edge total k-domination number of G is defined as γst′(G)=max{∑e∈E(G)f(e)|f is a RSETk-DF of G}.In this paper we give some upper bounds of the reverse signed edge total k-domination number γkst(G) of a graph G.
出处
《江西科学》
2010年第6期722-723,726,共3页
Jiangxi Science
基金
国家自然科学基金(11061014)
江西省教育厅科研项目(GJJ09235)
关键词
符号边全控制
反符号边全控制数
反符号边全k控制数
Signed edge total domination
Reverse signed edge total k-domination number
Reverse signed edge total k-domination number