期刊文献+

图的反符号边全K-控制数 被引量:2

On Reverse Signed Edge Total k-Domination in Graphs
下载PDF
导出
摘要 设G=(V,E)是一个图,一个函数f:E→{-1,+1}如果∑e′∈N(e)f(e′)≤0对于至少k条边e∈E成立,则称f为图G的一个反符号边全k控制函数。一个图G的反符号边全k控制数定义为γkst(G)=max{∑e∈Ef(e)|f为图G的反符边全k控制函数}。本文主要给出了连通图G的反符号边全k控制数γkst(G)的若干上限。 Let G=(V,E) be a graph,a function f:E→{-1,+1} is said to be a reverse signed edge total k-dominating function(RSETk-DF) of G if ∑e′∈N(e)f(e′)≤0 holds for at least k edges e∈E(G),the reverse signed edge total k-domination number of G is defined as γst′(G)=max{∑e∈E(G)f(e)|f is a RSETk-DF of G}.In this paper we give some upper bounds of the reverse signed edge total k-domination number γkst(G) of a graph G.
出处 《江西科学》 2010年第6期722-723,726,共3页 Jiangxi Science
基金 国家自然科学基金(11061014) 江西省教育厅科研项目(GJJ09235)
关键词 符号边全控制 反符号边全控制数 反符号边全k控制数 Signed edge total domination Reverse signed edge total k-domination number Reverse signed edge total k-domination number
  • 相关文献

参考文献5

  • 1Bondy J A,Murty V S R.Graph Theory with Applications[M].Elsevier:Amsterdam,1976.
  • 2Haynes T W,Hedetniemi S T,Slater P J.Domination in graphs[M].New York:Marcel Dekker,INC,1998.
  • 3Xu Baogen.On signed edge domination numbers of graphs[J].Discrete Math.,2001,239:179-189.
  • 4Xu Baogen.Two classes of edge domination in graphs[J].Discrete Appl.Math.,2006,154:1541-1546.
  • 5徐保根.关于图的符号k-控制数[J].华东交通大学学报,2005,22(1):145-148. 被引量:3

二级参考文献7

  • 1F哈拉里.图论[M].上海:上海科学技术出版社,1980..
  • 2E. J. Cockayne and C. M. Mynhardt, On a generalization of signed dominating function of graphs[ J ]. Ars. Combin., 1996, (43): 235 -245.
  • 3T.W.Haynes, S.T. Hedetniemi and P.J.Slater, Domination in graphs[M]. New York, 1998,95 - 105.
  • 4Zhongfu Zhang, Baogen Xu etc. A note on the lower bounds of signed domination numbers of a graph[ J ]. Discrete Math. 1999, (195): 295-298.
  • 5Baogen Xu, On minus domination and signed domination in graphs[ J ]. 数学研究与评论 ,2003, (4): 586 - 590.
  • 6Baogen Xu, On signed edge domination numbers of graphs[J]. Discrete Math. ,2001,(239): 179- 189.
  • 7J.H.Hattingh and E. Ungerer,The signed and minus k-subdomination numbers of comets[J]. Discrete Math. ,1998,(183): 141 - 152.

共引文献2

同被引文献14

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部