期刊文献+

基于BP神经网络的液压系统故障诊断研究 被引量:10

Fault Diagnosis of Hydraulic System Based on BP Neural Network
下载PDF
导出
摘要 介绍了神经网络反向传播算法(BP)的原理,研究了算法在某航天发射塔旋转平台液压系统故障诊断方面的应用,结合液压系统结构特点和工作原理,编制了基于BP神经网络的故障诊断系统,对液压系统各种故障模式进行了识别.仿真和试验表明设计的方案是可行的,并已成功应用于某航天发射塔旋转平台液压系统液压回路的故障诊断识别. The principle of neural network′s back-propagation algorithm(BP) was introduced,and BP algorithm′s application on the hydraulic system fault diagnosis of a cosmonautic launching tower rotary platform was studied.Combining with the structure feature and work principle of the hydraulic system,a fault diagnosis system based on BP neural network was established.The feasibility of the system was proved through the identification,emulation and experimentation of hydraulic system′s fault patterns.The system has been successfully applied to the hydraulic circuit′s fault diagnosis and identification of the hydraulic system of a cosmonautic launching tower rotary platform.
出处 《中北大学学报(自然科学版)》 CAS 北大核心 2010年第6期596-599,共4页 Journal of North University of China(Natural Science Edition)
基金 国家自然科学基金资助项目(50575214)
关键词 BP神经网络 特征提取 液压系统 故障诊断 BP neural network feature extraction hydraulic pressure system fault diagnosis
  • 相关文献

参考文献8

  • 1魏秀业,潘宏侠.齿轮箱故障诊断技术现状及展望[J].测试技术学报,2006,20(4):368-376. 被引量:37
  • 2王华民,陈霞,安钢,樊新海.基于高阶累积量的齿轮箱故障诊断研究[J].机械强度,2004,26(3):247-249. 被引量:15
  • 3Eberhart R C,Shi Y H.Partiale swarm optimization:developments,applications,and resources[C].Proceedings of the IEEE Congress on Evolutionary Computation,Piscataway,NJ:IEEE Service Center,2001:81-86.
  • 4Cosmin D B,José L,Costa S D.Tuning the parameters of a classifier for fault diagnosis-particle swarm optimization vs genetic algorithms[J].ICINCO,2006(1):157-162.
  • 5Carlisle A,Dozier G.Adapting particle swarm optimization to dynamic environments[C].Proceedings of International Conference on Artifical Intelligence.Lasvegas,USA,2000:429-434.
  • 6Shi Y H,Eberhart R C.Parameter selection in particle swarm optimization[C].Annual Conference on Evolutionary Programming.San Diego,1998.
  • 7Lai W X,Tse P W,Zhang G C,et al.Classification of gear faults using cumulates and the radial basis function network[J].Mechanical Systems and Signal Processing,2004,18(2):381-389.
  • 8Vemuri A T.Amethodology for faultdiagnosis in robotic systems using neural networks[J].Robotica,2004,22:419-438.

二级参考文献28

  • 1夏庆观.基于DataSocket和小波消噪的齿轮故障远程监测与诊断[J].现代制造工程,2004(2):90-92. 被引量:1
  • 2CHENGJun-sheng YUDe-fie YANGYu.A Method for Gear Fault Diagnosis Based on the Empirical Mode Decomposition[J].International Journal of Plant Engineering and Management,2004,9(4):230-235. 被引量:4
  • 3Meltzer G, Nguyen Phong Dien. Fault diagnosis in gears operating under non-stationary rotational speed using polar wavelet amplitude maps[J]. Mechanical Systems and Signal Processing, 2004 (18) :985-992.
  • 4Lai W X, Tse P W, Zhang G C, et al. Classification of gear faults using cumulates and the radial basis function network[J]. Mechanical Systems And Signal Processing, 2004, 18(2): 381-389.
  • 5Wang Wenyi, Albert K W. Autoregressive model-based gear fault diagnosis[J]. Journal of Vibration and Acoustics,2004, 124(4):172-179.
  • 6Bocaniala C D, da Costa J S, Palade V. Refinement of the diagnosis process performed with a fuzzy classifier[J].Lecture Notes In Artificial Intelligence, 2004(3215): 365-372.
  • 7I.iao S H. Expert system methodologies and applications-a decade review from 1995 to 2004[J]. Expert Systems With Applications, 2005, 28 (1):93-103.
  • 8I.iu S C, Liu S Y. An efficient expert system for machine fault diagnosis[J]. Int J Adv Manuf Technol, 2003(21):691-698.
  • 9Wilson W, Fathy I. A neuro-fuzzy approach to gear system monitoring[J]. IEEE Transactions on Fuzzy Systems,2004, 12 (5): 710-723.
  • 10Ch.en P, Liang X, Yamamoto T. Rough sets and partially-linearized neural network for structure fault diagnosis of rotating machinery[J]. LNCS, 2004(3174): 574-580.

共引文献50

同被引文献70

引证文献10

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部