期刊文献+

一种基于密度的无监督聚类算法

A Density-based Unsupervised Cluster Algorithm
下载PDF
导出
摘要 分析了k-means算法的缺陷、入侵检测特点和网络中数据的特点,提出了一种基于密度的无监督2次聚类算法—KD算法。该算法聚类使用改进的k-means算法并引入基于密度聚类算法的优点,以提高对单种入侵数据集及混合入侵数据集的检测效果。实验结果表明,该算法具有较高的检测率和较低的误检率。 Focusing on the defects of k-means algorithm and the features of intrusion detection,an improved cluster algorithm is promoted,called KD algorithm.This algorithm makes use of the improved k-means algorithm and takes the advantages of density-based cluster algorithm,so it can improve the invasion detection result for single and mixed intrusion detection data sets.The experimental results show that this algorithm has effectively detection rate and lower false alarm rate.
出处 《新乡学院学报》 2010年第6期53-56,共4页 Journal of Xinxiang University
基金 国家自然科学基金项目(60873208)
关键词 聚类算法 入侵检测 k-menas算法 KD算法 cluster algorithm intrusion detection k-means algorithm KD algorithm
  • 相关文献

参考文献5

二级参考文献40

  • 1SkoudisEd.反击黑客[M].北京:机械工业出版社,2002..
  • 2Tarakanov A O. Immunocomputlng for intelligent intrusion detection [J]. IEEE Computational Intelligence Magazine, 2008, 3(2) : 22-30.
  • 3Bouzida Y, Cuppens F. Neural networks vs. decision trees for intrusion detection [ C ]//MonAM Organisation Committee. Proceeding of IEEE / IST Workshop on Monitoring, Attack Detection and Mitigation (MonAM2006). Tuebingen, Germany: [s. n. ], 2006:81-88.
  • 4Abraham A, Grosan C, Martin-Vide C. Evolutionary design of intrusion detection programs [ J ]. International Journal of Network Security, 2007, 4 (3) :328-339.
  • 5LugerGF.人工智能--复杂问题求解的结构和策略[M].5版.史忠植,张银奎,赵志蓖,等译.北京:机械工业出版社,2006:1-23.
  • 6Mell P, Hu V, Lippmann R, et al. An overview of issues in testing intrusion detection systems [R]. Computer Security Division Computer Security Resource Center NIST Interagency Reports 7007. National Institute of Standards and Technology, Information Technology Laboratory, U.S. Commerce Department. 2003 : http://csrc, nist. gov/ publications/nistir/nistir-7007, pdf.
  • 7MIT. Intrusion detection attacks database [EB/OL]. MIT Lincoln Laboratory. [2009-04-03-] [2009-10- 30]. http://www. ll. mit. edu/mission/ communications/ist/corpora/ideval/docs/attackDB. html.
  • 8Levin I. KDD99 classifier learning contest LLsoft's results overview [J]. ACM SIGKDD Exploration, 2000, 1(2): 67-75.
  • 9Elkan C. Results of the KDD'99 classifier learning [J]. ACM SIGKDD Exploration, 2000, 1(2):63- 64.
  • 10KDD CUP 1999 DATA [EB/OL]. UCI KDD Archive, Information and Computer Science University of California. [1999-10-28] [-2009-04- 04]. http://kdd. ics. uci. edu/databases/kddcup99/ kddcup99, html.

共引文献153

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部