期刊文献+

基于偏袒性半监督集成的SVM主动反馈方案 被引量:2

SVM Active Feedback Scheme Using Semi-Supervised Ensemble with Bias
原文传递
导出
摘要 现有的SVM主动反馈算法普遍受到小样本问题和不对称分布问题的制约.针对这些问题,文中提出一种基于偏袒性半监督集成的SVM主动反馈技术.该算法在集成学习框架中使用未标记数据以增加个体分类器之间的差异性,从而获得高效的集成分类模型.同时,高效的集成分类模型更有利于寻找富有信息样本,进而也提高主动反馈的效率.此外,文中还设计一种偏袒加权策略,使得集成分类模型对正样本给予更大的关注程度,以应对正负样本间的不对称分布问题.实验结果表明,偏袒性半监督集成可有效改进SVM主动反馈的性能,且文中算法的检索精度明显优于其它同类相关反馈算法. Most SVM-based active learning methods are challenged by the small sample problem and the asymmetric distribution problems.A SVM-based active relevance feedback scheme is presented which deals with SVM ensemble under semi-supervised setting to augment the diversity among the individual SVM classifiers,thus a powerful ensemble classification model is obtained.Meanwhile,the powerful ensemble model is helpful to identify the most informative images for active learning.Moreover,aggregation method,termed as bias-weighting,is used within the semi-supervised ensemble framework to tackle the asymmetric distribution between positive and negative samples.Under the influence of bias-weighting,the ensemble classification model pays more attention on the positive samples than the negative ones.Experimental results validate the superiority of the presented scheme over several existing active learning methods.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2010年第6期745-751,共7页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金资助项目(No.60773084 60973067)
关键词 图像检索 相关反馈 支持向量机 半监督集成 Image Retrieval Relevance Feedback Support Vector Machine Semi-Supervised Ensemble
  • 相关文献

参考文献14

  • 1Datta R,Joshi D,Li Jia,et al.Image Retrieval:Ideas,Influences,and Trends of the New Age.ACM Computing Surveys,2008,40(2):1-60.
  • 2Zhou X S,Huang T S.Relevance Feedback in Image Retrieval:A Comprehensive Review.Multimedia System,2003,8(6):536-544.
  • 3陈可佳,姜远,周志华.基于主动相关反馈的图像检索方法[J].模式识别与人工智能,2005,18(4):480-485. 被引量:2
  • 4Huang T S,Dagli C K,Rajaram S,et al.Active Learning for Interactive Multimedia Retrieval.Proc of IEEE,2008,96(4):648-667.
  • 5Tong S,Chang E.Support Vector Machine Active Learning for Image Retrieval // Proc of the 9th ACM International Conference on Multimedia.Ottawa,Canada,2001:107-118.
  • 6Jiang Wei,Er Guihua,Dai Qionghai.Boost SVM Active Learning for Content-Based Image Retrieval // Proc of the 37th Asilomar Conference on Signals,Systems and Computers.Pacific Grove,USA,2003,Ⅱ:1585-1589.
  • 7Wang Lei,Chan K L,Zhang Zhihua.Bootstrapping SVM Active Learning by Incorporating Unlabelled Images for Image Retrieval // Proc of the IEEE International Conference on Computer Vision and Pattern Recognition.Madison,USA,2003:629-634.
  • 8Hoi S C H,Jin Rong,Zhu Jianke,et al.Semi-Supervised SVM Batch Mode Active Learning and Its Applications to Image Retrieval.ACM Trans on Information Systems,2009,27(3):1-29.
  • 9Zhou Zhihua.When Semi-Supervised Learning Meets Ensemble Learning // Proc of the 8th International Workshop on Multiple Classifier System.Reykjavik,Iceland,2009:529-538.
  • 10Wu Jun,Lin Zhengkui,Lu Mingyu.Asymmetric Semi-Supervised Boosting for SVM Active Learning in CBIR // Proc of the ACM International Conference on Image and Video Retrieval.Xi'an,China,2010:182-188.

二级参考文献13

  • 1Flickner M, et al. Query by Image and Video Content: The QBIC System. IEEE Computer, 1995, 28(9): 23-32.
  • 2Smeulders A W M, Worring M, Santini S, Gupta A, Jain R.Content-Based Image Retrieval at the End of the Early Years.IEEE Trans on Pattern Analysis and Machine Intelligence2000, 22(12): 1349-1380.
  • 3Maron O, Lozano-Perez T. A Framework for Multiple-Instance Learning. In: Jordan M I, Kearns M J, Solla S A, eds. Advances in Neural Information Processing Systems 10. Cambridge, USA: MIT Press, 1998, 570-576.
  • 4Yang C, Lozano-Perez T. Image Database Retrieval with Muhirpie-Instance Learning Techniques. In; Procof the 16th International Conference on Data Engineering. San Diego, USA, 2000,233-243.
  • 5Zhou Z H, Zhang M L, Chen K J. A Novel Bag Generator for Image Database Retrieval with Multi-Instance Learning Techniques. In: Proc of the 15th IEEE International Conference on Tools with Artificial Intelligence. Sacramento, USA, 2003, 565-569.
  • 6Rui Y, Huang T S, Ortega M, Mehrotra S. Relevance Feedback: A Powerful Tool in Interactive Content-Based Image Retrieval. IEEE Trans on Circuits and Systems for Video Technology, 1998, 8(5):644-655.
  • 7Angluin D. Queries and Concept Learning. Machine Learning,1988, 2(4): 319-342.
  • 8Lewis D D, Catlett J. Heterogeneous Uncertainty Sampling for Supervised Learning. In: Cohen D, Hirsh H, eds. Proc of the 11th International Conference on Machine Learning. New Brunswick, USA, 1994, 148-156.
  • 9Cohn D, Atlas L, Ladner R. Improving Generalization with Active Learning. Machine Learning, 1994, 15(2): 201-221.
  • 10Freund Y, Seung H S, Shamir E, Tishby N. Information,Prediction, and Query by Committee. In: Hanson S J, Cowan J D, Gilesk C L, eds. Advances in Neural Informations Processing Systems 5, San Marco, USA: Morgan Kaufmann Press,1993, 483-490.

共引文献1

同被引文献24

  • 1唐焕玲,孙建涛,陆玉昌.文本分类中结合评估函数的TEF-WA权值调整技术[J].计算机研究与发展,2005,42(1):47-53. 被引量:26
  • 2黄金杰,李士勇,蔡云泽.一种建立粗糙数据模型的监督模糊聚类方法[J].软件学报,2005,16(5):744-753. 被引量:12
  • 3Blum A , Mitchell T. Combining Labeled and Unlabeled Data with Co-Training//Proc of the 11 th Annual Conference on Computation- al Learning Theory. Madisson, USA, 1998:92-100.
  • 4Zhou Z H , Li M. Tri-Training: Exploiting Unlabeled Data Using Three Classifiers. IEEE Trans on Knowledge and Data Engineering, 2005, 17(11): 1529-1541.
  • 5Pan S J, Yang Qiang. A Survey on Transfer Learning. IEEE Trans on Knowledge and Data Engineering, 2010, 22 (10) : 1345 - 1359.
  • 6Dai Wenyuan, Yang Qiang, Xue Guirong, et al. Boosting for Trans- fer Learning// Proc of the 24th International Conference on Ma- chine Learning. Corvallis, USA, 2007 : 193-200.
  • 7Dai Wenyuan, Xue Guirong, Yang Qiang, et al. Transferring Naive Bayes Classifiers for Text Classification// Proc of the 22nd AAAI Conference on Artificial Intelligence. Vancouver, Canada, 2007: 540-545.
  • 8Eaton E, DasJardins M, Lane T. Modeling Transfer Relationships between Learning Tasks for Improved Inductive Transfer// Proc of the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases. Antwerp, Belgium, 2008 : 317-332.
  • 9Eaton E, DesJardins M. Selective Trander between Lexning Tasks Using Task-Based Boosting//Proc of the 25th AAAI Conference on Artificial Intelligence. San Francisco, USA, 2011 : 337-342.
  • 10Daume III H, Marcu D. Domain Adaptation for Statistical Classifier. Journal of Artificial Intelligence Research, 2006, 26( 1 ) : 101-126.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部