期刊文献+

交互式进化计算中保持用户理性的最大进化代数

Maximum Generation for User to Keep Rationality in Interactive Evolutionary Computation
原文传递
导出
摘要 交互式进化计算中用户保持理性是算法全局收敛的重要条件,为确保用户保持理性,必须设计合理的最大进化代数.文中首先提出3类最大进化代数,其次,结合6种常见的适应度赋值方法分别研究最大进化代数的定量计算方法.理论分析和实验都表明,采用最值赋值和分等级赋值方法不仅切实可行,而且可以让用户在较大的代数内保持理性状态.文中研究为选择合适的适应度赋值方法提供参考依据. To keep user rationality is a key element in interactive evolutionary computation to converge to the global solution.The maximum generation must be designed appropriately to help user keep rationality.Firstly,three different kinds of definition of the maximum generation are proposed.Secondly,the methods to calculate the maximum generation for six kinds of fitness-assignment methods are given.Both theory analysis and experimental results show that the most-satisfactory-identified fitness-assignment and the scale fitness-assignment practically help user keep rationality in more generations.The research provides references to select appropriate fitness-assignment methods.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2010年第6期781-785,共5页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金(No.70771037 40802061) 江苏省高校自然科学基金(No.09KJB120003)资助项目
关键词 进化计算 最大进化代数 用户理性 用户疲劳 Evolutionary Computation Maximum Generation User Rationality User Fatigue
  • 引文网络
  • 相关文献

参考文献13

  • 1Holland J H.Adaptation in Natural and Artificial Systems.Cambridge,USA:MIT Press,1992.
  • 2Gong Dunwei,Yuan Jie,Ma Xiaoping.Interactive Genetic Algorithms with Large Population Size // Proc of the IEEE Congress on Evolutionary Computation.Hongkong,China,2008:1678-1685.
  • 3郝国生,黄永青,张勇,阎俊荣.理性用户--交互式进化计算全局收敛的一个充分条件[J].模式识别与人工智能,2008,21(4):441-445. 被引量:3
  • 4Gong Dunwei,Yuan Jie.Impact of Individuals' Fitness Expressions on Interactive Genetic Algorithms' Performances // Proc of the Chinese Control and Decision Conference.Guilin,China,2009:2415-2420.
  • 5Gong Dunwei,Sun Xiaoyan,Yuan Jie.Interactive Genetic Algorithm with Individual's Uncertain Fitness // dos Santos W P,ed.Evolutionary Computation.Vienna,Austria:In-Tech Publisher,2009.
  • 6周勇,巩敦卫,郝国生,郭一楠,孙晓燕.交互式遗传算法基于NN的个体适应度分阶段估计[J].控制与决策,2005,20(2):234-236. 被引量:22
  • 7Gong Dunwei,Hao Guosheng,Zhou Yong,et al.Interactive Genetic Algorithms with Multi-Population Adaptive Hierarchy and Their Application in Fashion Design.Applied Mathematics and Computation,2007,185(2):1098-1108.
  • 8Takagi H,Kishi K.On-line Knowledge Embedding for an Interactive EC-Based Montage System // Proc of the International Conference on Knowledge-Based Intelligent Information Engineering Systems.Adelaide,Australia,1999:280-283.
  • 9Denis P,Philippe C,Thierry B,et al.Eye-Tracking Evolutionary Algorithm to Minimize User Fatigue in IEC Applied to Interactive One-Max Problem // Proc of the Genetic Evolutionary Computation Conference.London,UK,2007:2883-2886.
  • 10Gong Dunwei,Guo Guangsong,Lu Li,et al.Adaptive Interactive Genetic Algorithms with Interval Fitness of Evolutionary Individuals.Progress in Natural Science,2008,18(3):359-365.

二级参考文献26

  • 1钟伟才,刘静,刘芳焦,李成.组合优化多智能体进化算法[J].计算机学报,2004,27(10):1341-1353. 被引量:34
  • 2巩敦卫,郝国生,周勇,孙晓燕.分层交互式进化计算及其应用[J].控制与决策,2004,19(10):1117-1120. 被引量:15
  • 3于志刚,宋申民,段广仁.遗传算法的机理与收敛性研究[J].控制与决策,2005,20(9):971-980. 被引量:17
  • 4郝国生,张勇,张建化,石明辉,史有群.基于灭绝机制的交互式遗传算法[J].控制理论与应用,2006,23(5):665-670. 被引量:6
  • 5郝国生,史有群,黄永青,吕俊怀,郭广颂.交互式进化计算的适应值噪声及收敛鲁棒性[J].软件学报,2007,18(9):2183-2193. 被引量:4
  • 6Takagi H. Interactive evolutionary computation:Fusion of the capabilities of EC optimization and human evaluation[J]. Proc of the IEEE, 2001,89 (9) : 1275-1296.
  • 7Biles J A, Anderson P G, Loggi L W. Neural network fitness functions for a musical IGA[A]. Proc of the Int ICSC Symposium on Intelligent Industrial Automation and Soft Computing[C]. UK, 1996;B39-44.
  • 8Lee Joo-young, Cho Sung-bae. Sparse fitness evaluation for reducing user burden in interactive genetic algorithm [A]. 1999 IEEE Internatil Fuzzy Systems Conference Proceedings [C]. Seoul, 1999, 2:998-1003.
  • 9Sugimoto F, Yoneyama M. An evaluation of hybrid fitness assignment strategy in interactive genetic algorithm[A]. Proc of the 5th Australasia-Japan Joint Workshop on Intelligent and Evolutionary Systems[C].Dunedin, 2001 :62-69.
  • 10Takagi H.Interactive evolutionary computation:Fusion of the capabilities of EC optimization and human evolution[C]//San Diego:Proceedings of the IEEE,2001,1275-1296.

共引文献30

;
使用帮助 返回顶部