期刊文献+

基于立体匹配的低纹理图像重构算法 被引量:1

A Stereo Matching Based Construction Algorithm for Low Texture Images
原文传递
导出
摘要 针对立体匹配中低纹理区域容易产生误匹配及传统动态规划固有的条纹问题,提出一种改进的基于双目立体视觉的低纹理图像三维重构算法.该算法首先基于像素间相似度和像素自身特异性计算匹配代价并引入一种自适应多边形支撑区域聚集匹配度.然后采用一种全局意义的简单树形动态规划进行逐点匹配.最后基于左右一致性准则运用一种简单有效的视差校正方法消除误匹配得到最终视差图.实验证明将算法运用于实拍低纹理灰度图像的匹配,得到轮廓光滑清晰的三维点云,说明该方法的适用性. Aiming at the mismatching problem in low texture areas and the well-known streaking effect of dynamic programming,an improved algorithm based on binocular stereo matching technology is proposed to generate three-dimensional reconstruction model for low texture images.Firstly,matching cost is computed based on the distinctiveness of pixels and the similarity among them.Secondly,an adaptive polygon-based support window is adopted in the matching cost aggregation,and a simple tree structure dynamic programming is introduced to guide the pixel to pixel matching.Finally,a simple and efficient method is presented to refine the mismatching pixels detected according to the left-right consistency constraint.To testify the applicability of the proposed algorithm,it is applied to low texture gray images captured in the real situation,and the experimental results show that smooth and vivid 3D points cloud models are generated.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2010年第6期786-793,共8页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金(No.67005025) 江苏省自然科学基金(No.BK2010058)资助
关键词 立体匹配 低纹理 三维重构 自适应多边形支撑窗口 相似性 特异性 简单树形动态规划 Stereo Matching Low Texture 3D Construction Adaptive Polygon-Based Support Window Similarity Distinctiveness Simple Tree Dynamic Programming
  • 相关文献

参考文献23

  • 1Stefano L D,Marchionni M,Mattoccia S.A Fast Area-Based Stereo Matching Algorithm.Image and Vision Computing,2004,22(12):983-1005.
  • 2Moallem P,Faez K.Search Space Reduction in the Edge Based Stereo Matching by Context of Disparity Gradient Limit // Proc of the 2nd International Symposium on Image and Signal Processing and Analysis.Pula,Germany,2001:164-169.
  • 3van Ee R,Schor C M.Unconstrained Stereoscopic Matching of Lines.Vision Research,2000,40(2):151-162.
  • 4Kim J C,Lee K M,Choi B T,et al.A Dense Stereo Matching Using Two-Pass Dynamic Programming with Generalized Ground Control Points // Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition.San Diego,USA,2005,Ⅱ:1075-1082.
  • 5Sun Jian,Zheng Nanning,Shum Y H.Stereo Matching Using Belief Propagation.IEEE Trans on Pattern Analysis and Machine Intelligence,2003,25(7):787-800.
  • 6Boykov Y,Veksler O,Zabih R.Fast Approximate Energy Minimization via Graph Cuts.IEEE Trans on Pattern Analysis and Machine Intelligence,2001,23(11):1222-1239.
  • 7Belhumeur P N,Mumford D.A Bayesian Treatment of the Stereo Correspondence Problem Using Half-Occluded Regions // Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Los Alamitos,USA,1992:506-512.
  • 8Yoon K J,Kweon I S.Adaptive Support-Weight Approach for Correspondence Search.IEEE Trans on Pattern Analysis and Machine Intelligence,2006,28(4):650-656.
  • 9Hirschmüller H.Improvements in Real-Time Correlation Based Stereo Vision // Proc of the IEEE Workshop on Stereo and Multi-Baseline Vision.Hawaii,USA,2001:141-148.
  • 10Veksler O.Stereo Matching by Compact Windows via Minimum Ratio Cycle // Proc of the 8th IEEE International Conference on Computer Vision.Vancouver,Canada,2001:540-547.

同被引文献23

  • 1姚吉利.3维坐标转换参数直接计算的严密公式[J].测绘通报,2006(5):7-10. 被引量:82
  • 2胡坤,周富强,张广军.一种快速结构光条纹中心亚像素精度提取方法[J].仪器仪表学报,2006,27(10):1326-1329. 被引量:84
  • 3张俊.激光三维扫描技术在既有建筑测量中的应用[J].工业建筑,2013,8(43):288-293.
  • 4Wang Zhenhua, Geng Nan and Zhang Zhiyi. Surface Mesh Recon- struction Based on Contours[ J ]. in Computational Intelligence and Software Engineering, 2009.
  • 5Lv Zhihua, Zhang Zhiyi. Build 3D Laser Scanner Based on Bin- ocular Stereo Vision [ J ]. in Journal of Computers. 2012 : 399 - 404.
  • 6L D Stefano, M Marchionni, S Mattoccia. A Fast Area - Based Stereo Matching Algorithm [ J]. Image and Vision Computing, 2004,22(12) :983 - 1005.
  • 7C K Jae, et al. A dense stereo matching using two - pass dynamic programming with generalized ground control points [ J 1. in Com- puter Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on. 2005.
  • 8Geng Nan and Gou Qin. Adaptive Color Stereo Matching Based on Rank Transform[ J 1. in Industrial Control and Electronics Engi- neering ( ICICEE ), 2012 International Conference on. Xi'an. 2012.
  • 9/ C Steger. An unbiased detector of eurvilinear structures[ J]. Pat] / tern Analysis and Machine Intelligence, IEEE Transactions ont 1998.20(2) :113 - 125. /.
  • 10Zhang. Zhengyou. A flexible new technique for camera calibra- tion [ J]. Pattern Analysis and Machine Intelligence, Ieee Trans- actions on Pattern Analysis and Machine Intelligence, 2000,22 (11):1330 - 1334.

引证文献1

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部