期刊文献+

带Spearman相关性的多标签GRF算法 被引量:2

Multi-Label GRF Algorithm with Spearman Correlation
原文传递
导出
摘要 通过采用Spearman相关系数矩阵取代临时分类标记来构造标签相关性模块,提出一种改进的带Spearman相关性的多标签高斯随机域(MLQ-GRF)算法,以减少临时分类标记的不确定性.实验对比所得结果表明,文中构造的改进的MLQ-GRF算法对于扰动和带误差的临时分类标记有更好的稳定性,能提高分类的精确度. An improved multi-label Gaussian random field algorithm is proposed to reduce the uncertainty of temporary labels.The spearman correlation matrix is used to build a label-relevant module instead of temporary labels.The results of comparative experiments show that the proposed algorithm is stable for temporary labels with tolerance and disturbance and it increases the accuracy of classification.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2010年第6期862-866,共5页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金资助项目(No.60773047)
关键词 半监督学习 Spearman相关系数 多标签分类 Semi-Supervised Learning Spearman Correlation Matrix Multi-Label Classification
  • 相关文献

参考文献10

  • 1Zhu Xiaojin.Semi-Supervised Learning Literature Survey.Technical Report,TR1530,Madison,USA:University of Wisconsin-Madison.Department of Computer Sciences,2005.
  • 2Dempster A P,Laired N M,Rubin D B.Maximum Likelihood from Incomplete Data via the EM Algorithm.Journal of the Royal Statistical Society,1977,39(1):1-38.
  • 3Nigam K,McCallum A,Thrun S,et al.Text Classification from Labeled and Unlabeled Documents Using EM.Machine Learning,1999,39(2/3):103-134.
  • 4Bennett K P,Demiriz A.Semi-Supervised Support Vector Machines // Kearns D C M,Solla S,eds.Advances in Neural Information Processing Systems.Cambridge,USA:MIT Press,1998,Ⅺ:368-374.
  • 5Balcan M F,Blum A,Yang K.Co-Training and Expansion:Towards Bridging Theory and Practice // Saul L K,Weiss Y,Bottou L,eds.Advances in Neural Information Processing Systems.Cambridge,USA:MIT Press,2005,XVIII:89-96.
  • 6Zhu Xiaojin,Ghahramani Z,Lafferty J D.Semi-Supervised Learning Using Gaussian Field and Harmonic Functions // Proc of the 20th International Conference on Machine Learning.Washington,USA,2003:912-919.
  • 7Zha Zhengjun,Mei Tao,Wang Jingdong,et al.Graph-Based Semi-Supervised Learning with Multiple Labels.Journal of Visual Communication and Image Representation,2009,20(2):97-103.
  • 8Myers J L,Well A D.Research Design and Statistical Analysis.2nd Edition.Mahwah,USA:Lawrence Erlbaum,2003:508-509.
  • 9Chen Gang,Song Yangqiu,Wang Fei,et al.Semi-Supervised Multi-Label Learning by Solving a Sylvester Equation // Proc of the 8th SIAM International Conference on Data Mining.Atlanta,USA,2008:410-419.
  • 10Smeulders A.MediaMill Semantic Video Search Engine[EB/OL].[2009-05-01].http://www.science.uva.nl/research/mediamill/challenge/.

同被引文献16

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部